Open Access Open Access  Restricted Access Subscription Access

Emerging and Re-emerging Biotic Stresses of Agricultural Crops in India and Novel Tools for their Better Management


Affiliations
1 ICAR-National Institute of Biotic Stress Management, Raipur 493 225, India
 

Food security of our country is at risk due to heavy yield losses of agricultural crops caused by pests and diseases known together as biotic stresses. Conventional management practices in vogue are not competent under the current situations obscured by the incitants of biotic stresses which have either enhanced their offensive capabilities due to adaptive mutations or regained their pathogenic/ herbivory potential owing to climate change. Numerous causal agents of biotic stresses are also introduced in the country or new regions of the country either through natural dispersal as invasive species, or on account of quarantine irregularities at national or international levels. Therefore, it is of utmost importance to appraise the impact of these new biotic stresses burgeoned in the recent past and to develop novel technologies for their management. To devise an effective preventive and eradicative strategy for containing these biotic stresses, new research innovations need to be practiced such as deciphering basic/molecular mechanism of host-pathogen/insect interactions; endophytic mechanisms of plant protection; nanotechnology in pest management; host resistance strengthening by gene cloning, recombinant DNA technologies, RNA biology, utilizing gene editing technologies such as CRISPR/Cas9, etc. This article presents a comprehensive account of new biotic stresses of agricultural crops built up in the country and also reviews the novel scientific inventions made worldwide which can be further employed to devise more efficient methods for alleviating impact of these biotic stresses of food crops in the country.

Keywords

Agriculture, Biotic Stress, Crops, Food Security, Management.
User
Notifications
Font Size

  • Rathee, M. and Dalal, P., Emerging insect pests in Indian Agriculture. Indian J. Ent., 2018, 80(2), 267–281.
  • Hill, D. S., Pest definitions. In The Economic Importance of Insects, Springer, Dordrecht, The Netherlands, 1997; https://doi.org/10.1007/978-94-011-5348-5_3.
  • Udikeri, S. S., Kranthi, K. R., Patil, S. B., Modagi, S. A. and Vandal, N. B., Bionomics of mirid bug, Creontiades biseratense (Distant) and oviposition pattern in Bt cotton. Karnataka J. Agric. Sci., 2010, 23(1), 153–156.
  • Halder, J., Rai, A. B. and Kodandaram, M. H., Compatability of neem oil and different entomopathogens for the management of major vegetable sucking pests. Natl. Acad. Sci. Lett., 2013, 36(1), 19–25.
  • Murali Baskaran, R. K. et al., National Status of Biotic Stress of Crops, ICAR-National Institute of Biotic Stress Management, Raipur, Chhattisgarh, India, 2018, p. 174 (ISBN: 978-81-9427881-8).
  • Mallikarjuna, J., Yele, Y. and Jain, S. K., Heavy infestation of sugarcane leafhopper, Pyrilla perpusilla on wheat and oats in Chhattisgarh. Indian J. Ent., 2019, 81(3), 516–517.
  • Kanakala, S. and Ghanim, M., Global genetic diversity and geographical distribution of Bemisia tabaci and its bacterial endosymbionts. PLoS ONE, 2019, 14(3), e0213946.
  • Singh, S., Pandey, A. K., Singh, B. K. and Rajak, D. C., Impact of exotic pests on agro-biodiversity and their management: a review. Biol. Bull., 2016, 2(1), 58–73.
  • Gupta, N., Verma, S. C., Sharma, P. L., Thakur, M., Sharma, P. and Devi, D., Status of invasive insect pests of India and their natural enemies. J. Entomol. Zool. Stud., 2019, 7(1), 482–489.
  • Naveena, N. L., Shashank, P. R., Devaramane, R. and Mallikarjuna, J., Invasive insect pests in India: current scenario and future perspective. Indian Entomol., 2020, 1(1), 23–31.
  • Biondi, A., Guedes, R. and Wan, F., Ecology, worldwide spread, and management of the invasive South American tomato pinworm, Tuta absoluta: past, present, and future. Annu. Rev. Entomol., 2018, 63, 239–258.
  • Urbaneja, A., Vercher, R., Navarro, V., Porcuna, J. L. and García-Marí, F., La polilla deltomate, Tuta absoluta. PHYTOMASpain, 2007, 194, 16–24.
  • Tropea-Garzia, G., Siscaro, G., Biondi, A. and Zappala, L., Biology, distribution and damage of Tuta absoluta, an exotic invasive pest from South America. Bull. OEPP, 2012, 42, 205–210.
  • Cannon, R. L., Matthews, D. and Collins, A review of the pest status and control options for Thrips palmi. Crop Prot., 2007, 26, 1089–1098.
  • Sharanabasappa, D. et al., First report of the fall Armyworm, Spodoptera frugiperda (J. E. Smith) (Lepidoptera, Noctuidae), an alien invasive pest on maize in India. Pest Manage. Hortic. Ecosyst., 2018, 24(1), 23–29.
  • Shrestha, S., Effects of climate change in agricultural insect pest. Acta Sci. Agric., 2019, 3(12), 74–80.
  • Manikandan, N., Kennedy, J. S. and Geethalakshmi, V., Effect of elevated temperature on development time of rice yellow stem borer. Indian J. Sci. Technol., 2013, 6(12), 5563–5566.
  • Srinivasa Rao, M., Manimanjari, D., Rama Rao, A. C., Swathi, P. and Maheswari, M., Effect of climate change on Spodoptera litura Fab. on peanut: a life table approach. Crop Prot., 2014, 66, 98–106.
  • Srinivasa Rao, M. et al., Tritrophic interactions of cowpea [Vigna unguiculata subsp unguiculata (L.)], aphids [Aphis craccivora (Koch)] and Coccinellids [Menochilus sexmaculatus (Fab.)] under eCO2 and eTemp. J. Asia-Pacific Entomol., 2018, 21, 531– 537.
  • Gould, F., Brown, Z. S. and Kuzma, J., Wicked evolution: can we address the sociobiological dilemma of pesticide resistance? Science, 2018, 360, 728–732.
  • Sarwar, M. and Salman, M., Insecticides resistance in insect pests or vectors and development of novel strategies to combat its evolution. Int. J. Bioinform. Biomed. Eng., 2015, 1(3), 344–351.
  • Kole, R. K., Roy, K., Panja, B. N., Sankarganesh, E., Mandal, T. and Worede, E., Use of pesticides in agriculture and emergence of resistant pests. Indian J. Anim. Health, 2020, 58(2), 53–70.
  • Kranthi, K. R., Bt cotton Questions and Answers. Indian Society for Cotton Improvement, Mumbai, 2012, pp. 1–70.
  • Laha, G. S. et al., Changes in Rice disease scenario in India: An analysis from production oriented survey. Technical Bulletin No. 91, ICAR-IIRR, Hyderabad, India, 2017, p. 95.
  • Nagarajan, S., Climate change and cereal diseases in south Asia. In Wheat, Productivity Enhancement under Changing Climate (eds Singh, S. S. et al.), Narosa Publishing House Pvt Ltd, New Delhi, India, 2012, pp. 218–226.
  • Chhabra, M. L., Parameswari, B. and Viswanathan, R., Pathogenic behaviour pattern of Colletotrichum falcatum isolates of sugarcane in sub-tropical India. Vegetos, 2016, 29, 1–4.
  • Thangavelu, R., Mostert, D., Gopi, M., Ganga Devi, P., Padmanaban, B., Molina, A. B. and Viljoen, A., First detection of Fusarium oxysporum f. sp. cubense tropical race 4 (TR4) on
  • Cavendish banana in India. Eur. J. Plant Pathol., 2019, 154, 777–786.
  • Pande, S. and Sharma, M., Climate Change: potential impact on chickpea and pigeonpea diseases in the rainfed semi-arid tropics (SAT). In Proceedings of the 5th International Food Legume Research Conference on Grain Legumes (AEP VII), Antalya, Turkey, 2010.
  • Sharma, M., Mangala, U. N., Krishnamurthy, M., Vadez, V. and Pande, S., Drought and dry ischolar_main of chickpea. In Proceedings of the 5th International Food Legume Research Conference on Grain Legumes (AEP VII), Antalya, Turkey, 2010.
  • Gautam, H. R., Bhardwaj, M. L. and Kumar, R., Climate change and its impact on plant diseases. Curr. Sci., 2013, 105, 1686– 1691.
  • Bishnoi, S. K., Kumar, S. and Singh, G. P., Wheat blast readiness of the Indian wheat sector. Curr. Sci., 2021, 120, 262–263.
  • https://www.downtoearth.org.in/blog/food/verifying-viral-virustruthstomatoes-tiranga-and-trps-71720 (accessed on 25 January 2021).
  • Mandal, B., Rao, G. P., Baranwal, V. K. and Jain, R. K. (eds), Introduction: a century of plant virology in India. In A Century of Plant Virology in India, Springer, Singapore, 2017; https://doi.org/10.1007/978-981-10-5672-7_1.
  • Verma, R., Ram, R. D. and Tomer, S. P. S., Survey and surveillance of Papaya ring spot virus disease in India. J. Maharashtra Agric. Univ., 2007, 32, 277–278.
  • Sahu, B. et al., Begomoviruses affecting pulse and vegetable crops are unevenly distributed in distinct agroecological zones of eastern India. J. Phytopathol., 2021; doi:10.1111/jph.12978.
  • Walia, R. K. and Chakrabarti, P. K. (eds), Nematode problems of crops in India. ICAR-All India Coordinated Research project on Nematodes in Agriculture, 2018, p. 400.
  • Pimentel, D., Lach, L., Zuniga, R. and Morrison, D., Environmental and economic costs of non-indigenous species in the United States. BioScience, 2000, 50, 53–65.
  • Mishra, J. S., Moorthy, B. T. S., Bhan, M. and Yadurajy, N. T., Relative tolerance of rainy season crops to field dodder (Cuscuta campestris) and its management in niger (Guizotia abyssinica). Crop Prot., 2007, 26(4), 625–629.
  • Mishra, J. S., Biology and management of Cuscuta spp. Indian J. Weed Sci., 2009, 41(1&2), 1–11.
  • Phool Chand, Singh, A., Vishwakarma, R. and Singh, S. K., Plant quarantine: an effective approach for prevention of alien pest and disease. Bull. Environ. Pharmacol. Life Sci., 2017, 6(11), 8–13.
  • Ghosh, S., Lockdown throws up challenges for quarantine of plant samples for research; https://india.mongabay.com (accessed on 20 January 2021).
  • Meena, R. P., Meena, B. L., Nandal, U. and Meena, C. L., Indigenous measures developed by farmers to curb the menace of blue bull (Boselaphus tragocamelus) in district Rajsamand, Rajasthan, India. Indian J. Tradit. Know., 2014, 13(1), 208–215.
  • Nasim, A. A., Status of mammals with special reference to population estimation of Nilgai Boselaphus tragocamelus and suggest mitigation measures to prevent crop damage in and around Surajpur reserve forest, Uttar Pradesh, India. J. Entomol. Zool. Stud., 2017, 5(4), 1085–1091.
  • Tisdel, C. A., Wild Pigs Environmental Pest or Economic Resource? Pergamon Press Ltd, Oxford, UK, 1982.
  • Roberts, T. J., The Mammals of Pakistan, Ernest Benn, London, 1977, pp. 1–361.
  • Gischolar_main-Bruinderinck, G. W. T. A., Hazebrook, E. and Van Der Voot, H., Diet and condition of wild boar (Sus scrofa) without supplementary feeding. J. Zool. Soc. London, 1994, 233, 631– 648.
  • Moreira, J., Rosa, L., Lourenço, J., Barroso, I., Pimenta, V., Projec to Lobo; Report of Progress, 1996 (Co-financed by the EU - Life Program). Ministry of Environment and Natural Resources; Institute for Conservation of Nature. Montesinho Natural Park, Bragança (Portugal). 61, (1997).
  • Khokhar, A. R. and Rizvi, S. W. A., Productivity enhancement of rice crop yield through prevention of losses due to wild boars in Pakistan. Turk. J. Zool., 1998, 22, 167–171.
  • Vasudeva Rao, V., Naresh, B., Ravinder Reddy, V., Sudhakar, C., Venkateswarlu, P. and Rama Rao, D., Traditional management methods used to minimize wild boar (Sus scrofa) damage in different agricultural crops at Telangana state, India. Int. J. Multidiscip Res. Dev., 2015, 2(2), 32–36.
  • Kumar, A., Traditional plant protection management practices of Rajasthan. LEISA India, 2007, 29–30.
  • Toenniessen, G. H., O’Toole, J. C. and DeVries, J., Advances in plant biotechnology and its adoption in developing countries Curr. Opin. Plant Biol., 2003, 6, 191–198.
  • Brookes, G. and Barfoot, P., GM crops: the global economic and environmental impact: the first nine years 1996–2004. AgBioForum, 2005, 8, 15.
  • Stewart, S. D., Adamczyk, J. J., Knighten, K. S. and Davis, F. M., Impact of Bt cottons expressing one or two insecticidal proteins of Bacillus thuringiensis Berliner on growth and survival of noctuid (Lepidoptera) larvae. J. Econ. Entomol., 2001, 94, 752– 760.
  • Chitkowski, R. L., Turnipseed, S. G., Sullivan, M. J. and Bridges, W. C., Field and laboratory evaluations of transgenic cottons expressing one or two Bacillus thuringiensis var. kurstaki Berliner proteins for management of noctuid (Lepidoptera) pests. J. Econ. Entomol., 2003, 96, 755–762.
  • Rajamohan, F., Alzate, O., Cotrill, J. A., Curtiss, A. and Dean, D. H., Protein engineering of Bacillus thuringiensis deltaendotoxin: mutations at domain II of CryIAb enhance receptor affinity and toxicity toward gypsy moth larvae. Proc. Natl. Acad. Sci. USA, 1996, 93, 14338–14343.
  • Rao, K. V. et al., Expression of snowdrop lectin (GNA) in transgenic rice plants confers resistance to rice brown plant hopper. Plant J., 1998, 15, 469–477.
  • Foissac, X., Loc, N. T., Christou, P., Gatehouse, A. M. R. and Gatehouse, J. A., Resistance to green leafhopper (Nephotettix virescens) and brown planthopper (Nilaparvata lugens) in transgenic rice expressing snowdrop lectin (Galanthus nivalis agglutinin; GNA). J. Insect Physiol., 2000, 46, 573–583.
  • French-Constant, R. H., Dowling, A. and Waterfield, N. R., Insecticidal toxins from Photorhabdus bacteria and their potential use in agriculture. Toxicon, 2007, 49, 436–451.
  • Corbin, D. R., Gerenuk, R. J., Ohnmeiss, T. E., Greenplate, J. T. and Purcell, J. P., Expression and chloroplast targeting of cholesterol oxidase in transgenic tobacco plants. Plant Physiol., 2001, 126, 1116–1128.
  • Kim, Y. S., Uefuji, H., Ogita, S. and Sano, H., Transgenic tobacco plants producing caffeine: a potential new strategy for insect pest control. Transgenic Res., 2006, 15, 667–672.
  • Wang, E., Wang, R., De Parasis, J., Loughrin, J. H., Gan, S. and Wagner, G. J., Suppression of a P450 hydroxylase gene in plant trichome glands enhances natural-product-based aphid resistance. Nat. Biotechnol., 2001, 19, 371–374.
  • Aharoni, A. et al., Terpenoid metabolism in wild-type and transgenic Arabidopsis plants. Plant Cell, 2003, 15, 2866.
  • Schnee, C., Kollner, T. G., Held, M., Turlings, T. C. J., Gershenzon, J. and Degenhardt, J., The products of a single maize sesquiterpene synthase form a volatile defense signal that attracts natural enemies of maize herbivores. Proc. Natl. Acad. Sci. USA, 2006, 103, 1129–1134.
  • Beale, M. H. et al., Aphid alarm pheromone produced by transgenic plants affects aphid and parasitoid behavior. Proc. Natl. Acad. Sci. USA, 2006, 103, 10509–10513.
  • Niehl, A., Soininen, M., Poranen, M. M. and Heinlein, M., Synthetic biology approach for plant protection using dsRNA. Plant Biotechnol. J., 2018, 16(9), 1679–1687.
  • Bramlett, M., Plaetinck, G. and Maienfisch, P., RNA-based biocontrols – a new paradigm in crop protection. Engineering, 2020, 6, 522–527.
  • Zhang, Y., Massel, K., Godwin, I. D. and Gao, C., Applications and potential of genome editing in crop improvement. Genome Biol., 2018, 19, 210.
  • Borrelli, V., Brambilla, V., Rogowsky, P., Marocco, A. and Lanubile, A., The enhancement of plant disease resistance using CRISPR/Cas9 technology. Front. Plant Sci., 2018, 9, 1245.
  • Turner, C. T., Davy, M. W., MacDiarmid, R. M., Plummer, K. M., Birch, N. P. and Newcomb, R. D., RNA interference in the light brown apple moth, Epiphyas postvittana (Walker) induced by double-stranded RNA feeding. Insect Mol. Biol., 2006, 15, 383–391.
  • Baum, J. A. et al., Control of coleopteran insect pests through RNA interference. Nat. Biotechnol., 2007, 25, 1322–1326.
  • Mao, Y. B. et al., Silencing a cotton bollworm P450 monoxygenase gene by plant-mediated RNAi impairs larval tolerance of gossypol. Nat. Biotechnol., 2007, 25, 1307–1313.
  • Rishi, N., Significant plant virus diseases in India and a glimpse of modern disease management technology. J. Gen. Plant Pathol., 2009, 75, 1–18.
  • Varma, A. and Malathi, V. G., Emerging geminivirus problems: a serious threat to crop production. Ann. Appl. Biol., 2003, 142, 145–164.
  • European Commission Joint Research Center, Reference report considerations on a definition of nanomaterial for regulatory purposes, 2010.
  • Matthews, G. A., Pests, pesticides and pest management. In Highlights in Environment Research (ed. Mason, J.), Imperial College Press, London, 2000, pp. 165–189.
  • White, J. F. et al., Review: endophytic microbes and their potential applications in crop management. Pest Manag. Sci., 2019, 75, 2558–2565.
  • Hardoim, P. R. et al., The hidden world within plants: ecological and evolutionary considerations for defining functioning of microbial endophytes. Microbiol. Mol. Biol. Rev., 2015, 79, 293–320.
  • De-Silva, N. I., Brooks, S., Lumyong, S. and Hyde, K. D., Use of endophytes as biocontrol agents. Fungal Biol. Rev., 2019, 33, 133–148.
  • Kumar, V., Jain, L., Jain, S. K., Chaturvedi, S. and Kaushal, P., Bacterial endophytes of rice (Oryza sativa L.) and their potential for plant growth promotion and antagonistic activities. S. Afr. J. Bot., 2020, 34, 50–63.
  • Mathys, G., Thoughts on quarantine problems. EPPO. Bull. OEPP, 1975, 5(2), 55.
  • Prakash, A. et al., Emerging pest scenario in rice in India. J. Appl. Zool. Res., 2014, 25(2), 179–181.
  • ICAR, Status paper – Crop Protection. Division of Crops Science, ICAR, Krishi Bhawan, New Delhi, 2018.
  • Arora, R. and Dhawan, A. K., Climate change and insect pest management. In Recent Trends in Integrated Pest Management. Invited Papers – Third Congress on Insect Science (eds Dhawan, K. et al.), Indian Society for the Advancement of Insect Science, Punjab Agricultural University, Ludhiana, 18–20 April 2011, pp. 77–88.
  • Kaur, S., Dhaliwal, L. and Kaur, P., Impact of climate change on wheat disease scenario in Punjab. J. Res., 2008, 45(3&4), 161– 170.
  • Deole, S. and Paul, N., First report of fall army worm, Spodoptera frugiperda (J. E. Smith), their natural of damage and biology on maize crop at Raipur, Chhattisgarh. J. Entomol. Zool. Stud., 2018, 6(6), 219–221.
  • Pande, S., Desai, S. and Sharma, M., Impacts of climate change on rainfed crop diseases: Current status and future research needs. National Symposium on Climate Change and Rainfed Agriculture, Central Research Institute of Dryland Agriculture, Hyderabad, 18–20 February 2010, pp. 55–59.
  • Singh, H. S. et al., Emerging pests of fruit crops like mango, litchi, bael, tamarind, sweet orange, banana, papaya and guava in Eastern India. J. Appl. Zool. Res., 2014, 25(2), 161–169.
  • Kanhar, K. A., Sahito, H. A., Kanher, F. M., Tunio, S. A. and Awan, R. R. H., Damage per cent and biological parameters of leaf miner, Acerocercops syngramma (Meyrick) on different mango varieties. J. Entomol. Zool. Stud., 2016, 4(4), 541–546.
  • Gundappa, Jayanthi, P. D. K. and Verghese, A., Management of spiraling whitefly, Aleurodicus disperses (Russel) in guava, Psidium guajava L. Pest Manage. Hortic. Ecosyst., 2013, 19(1), 102–105.
  • Jayanthi, P. D. K. and Verghese, A., Sapodilla seed borer, Trymalitis margaritas Meyrick – an invasive or indigenous species. Pest Manage. Hortic. Ecosyst., 2010, 16(2), 141–147.
  • Dadmal, S. M. and Pawar, N. P., The fruit sucking moth, Eudocima (Othreis) fullonica on Nagpur mandarin in Vidarbha Region. Insect Environ., 2001, 6, 167.
  • Singh, S. and Kaur, G., Incidence of metallic shield bug, Scutellera perplexa (Westwood) (S. nobilis Fabricius) on grape in Punjab. Pest Manage. Hortic. Ecosyst., 2015, 21(1), 90–94.
  • Jayanthi, P. D. K., Nagaraja, T., Raghava, T. and Kempraj, V., Pomegranate, a newly documented host plant of tea mosquito bug, Helopeltis antonii Signoret. Pest Manage. Hortic. Ecosyst., 2016, 22(1), 88–90.
  • Jayanthi, P. D. K., Reddy, P. V. R., Kempraj, V. and Shashank, P. R., Outbreak of banana skipper, Erionota torus Evans (Lepidoptera: Hesperiidae) in sourhtern India: evidence of expanded geographic range. Pest Manage. Hortic. Ecosyst., 2015, 21(1), 95–97.
  • Kumar, V., Kumar, A. and Nath, V., Emerging pests and diseases of litchi (Litchi chinensis Sonn.). Pest Manage. Hortic. Ecosyst., 2011, 17, 10.
  • Rai, A. B., Halder, J. and Kodandaram, Emerging insect pest problems in vegetable crops and their management in India: an appraisal. Pest Manage. Hortic. Ecosyst., 2014, 20(2), 113– 122.
  • Ranganath, H. R., Naveena, N. L., Saroja, S. and Yeshwanth, H. M., Mirid bug, Nesidiocoris cruentatus (Ballard) – an emerging pest on bottle gourd, Lagenaria siceraria (Molina) Standley. Pest Manage. Hortic. Ecosyst., 2015, 21(1), 104–105.
  • Singh, J. and Raghuraman, M., Emerging scenario of important mite pests in North India. Zoosymposia, 2011, 6, 170–179.
  • Joshi, M. D., Butani, P. G., Patel, V. N. and Jeyakumar, P., Cotton mealybug, Phenococcus solenopsis Tinsley – a review. Agric. Rev., 2010, 31(2), 113–119.
  • Shylesha, A. N., Jalali, S. K., Gupta, A., Varshney, R., Venkatesan, T. and Shetty, P., Studies on new invasive pest, Spodoptera frugiperda (J. E. Smith) (Lepidoptera: Noctuidae) and its natural enemies. J. Biol. Control, 2018, 32(3), 1–7.
  • Prashar, M., Bhardwaj, S. C., Jain, S. K. and Datta, D., Pathotypic evolution in Puccinia striiformis in India during 1995–2004. Aust. J. Agric. Res., 2007, 58, 602–604.
  • Mishra, S. C., The American blight or wooly apple aphid, E. lanigerum (Hausmann). Agric. J. India, 1920, 15, 627.
  • Jhala, R. C., Bharpoda, T. M. and Patel, M. G., Phenococcus solenopsis Tinsely (Hemiptera: Pseudococcidae, the meal bug species recorded first time on cotton an its alternate host plants in Gujarat, India. Uttar Pradesh J. Zool., 2008, 28(3), 403–406.
  • Sujithra, M., Rajkumar, Prathibha, V. H., Vinayaka, H. and Poorani, J., Occurrence of nesting whitefly Paraleyrodes minei laccarino (Hemiptera: Aleyrodidae) in India. Indian J. Entomol., 2019, 81, 507–510.
  • Singh, S. P., Some success stories in classical biological control of agriculture pest in India, Asia-Pacific Association of Agricultural Research Institutions, Bangkok, Thailand, 2004.
  • Fletcher, T. B., Some south Indian insects and other animals of importance considered especially from an economic point of view, Superintendent Government Press, Madras, 1914, p. 565.
  • Sridhar, V., Chakravarthy, A. K., Asokan, R. S., Vinesh, K., Rebijith, B. and Vennila, S., New record of the invasive South American tomato leaf miner, (Meyrick) (Lepidoptera: Gelechiidae) in India. Pest Manage. Hortic. Ecosyst., 2014, 20, 148–154.
  • Suganthy, M., Rageshwari, S., Senthilraja, C., Nakkeeran, S., Malathi, V. G., Ramaraju, K. and Renukadevi, P., New record of Western flower thrips, Frankliniella occidentalis (Pergande) (Thysanoptera: Thripidae) in South India. Int. J. Environ. Agric. Biotech., 2016, 1(4), 857–867.
  • Bisht, K. and Giri, G. S., Invasive insect pest scenario in India: A threat to biodiversity. J. Entomol. Res., 2019, 43(2), 229–234.
  • Palaniswami, M. S., Pillai, K. S., Nair, R. R. and Mohandas, C. A., A new cassava pest in India. Cassava Newslett., 1995, 19, 6–7.
  • Rao, N. B. V. C., Roshan, D. R., Rao, G. K. and Ramanandam, G. A., Review on rugose spiralling whitefly, Aleurodius rugioperculatus Martin (Hemiptera: Aleyrodidae) in India. J. Pharm. Phytol., 2018, 7(5), 948–953.
  • Selvaraj, K., Sundararaj, R. and Sumalatha, B. V., Invasion of the palm infesting whitefly, Aleurotrachelus atratus Hempel (Hemiptera: Aleyrodidae) in the Oriental region. Phytoparasitica, 2019, 47, 327–332; doi:10.1007/s12600-019-00742-1.
  • Nagrare, V. S., Kranthi, S., Biradar, V. K., Zade, N. N., Sangode, V. and Kakde, G., Widespread infestation of the exotic mealybug species, Penacoccus solenopsis (Tinsely) (Hemiptera: Pseudcoccid, on cotton in India. Bull. Entomol. Res., 2009, 99, 537–541.
  • Vega, R. E., Mercadier, G., Damon, A. and Krik, A., Natural enemies of the coffee berry borer, Hypothenemus hampei (Ferrari) (Coleoptera: Scolytidae) in Togo and Cote d’Ivoire, and other insects associated with coffee beans. Afr. Entomol., 1999, 7(2), 243–248.

Abstract Views: 329

PDF Views: 79




  • Emerging and Re-emerging Biotic Stresses of Agricultural Crops in India and Novel Tools for their Better Management

Abstract Views: 329  |  PDF Views: 79

Authors

J. Kumar
ICAR-National Institute of Biotic Stress Management, Raipur 493 225, India
R. K. Murali-Baskaran
ICAR-National Institute of Biotic Stress Management, Raipur 493 225, India
S. K. Jain
ICAR-National Institute of Biotic Stress Management, Raipur 493 225, India
P. N. Sivalingam
ICAR-National Institute of Biotic Stress Management, Raipur 493 225, India
J. Mallikarjuna
ICAR-National Institute of Biotic Stress Management, Raipur 493 225, India
Vinay Kumar
ICAR-National Institute of Biotic Stress Management, Raipur 493 225, India
K. C. Sharma
ICAR-National Institute of Biotic Stress Management, Raipur 493 225, India
J. Sridhar
ICAR-National Institute of Biotic Stress Management, Raipur 493 225, India
P. Mooventhan
ICAR-National Institute of Biotic Stress Management, Raipur 493 225, India
A. Dixit
ICAR-National Institute of Biotic Stress Management, Raipur 493 225, India
P. K. Ghosh
ICAR-National Institute of Biotic Stress Management, Raipur 493 225, India

Abstract


Food security of our country is at risk due to heavy yield losses of agricultural crops caused by pests and diseases known together as biotic stresses. Conventional management practices in vogue are not competent under the current situations obscured by the incitants of biotic stresses which have either enhanced their offensive capabilities due to adaptive mutations or regained their pathogenic/ herbivory potential owing to climate change. Numerous causal agents of biotic stresses are also introduced in the country or new regions of the country either through natural dispersal as invasive species, or on account of quarantine irregularities at national or international levels. Therefore, it is of utmost importance to appraise the impact of these new biotic stresses burgeoned in the recent past and to develop novel technologies for their management. To devise an effective preventive and eradicative strategy for containing these biotic stresses, new research innovations need to be practiced such as deciphering basic/molecular mechanism of host-pathogen/insect interactions; endophytic mechanisms of plant protection; nanotechnology in pest management; host resistance strengthening by gene cloning, recombinant DNA technologies, RNA biology, utilizing gene editing technologies such as CRISPR/Cas9, etc. This article presents a comprehensive account of new biotic stresses of agricultural crops built up in the country and also reviews the novel scientific inventions made worldwide which can be further employed to devise more efficient methods for alleviating impact of these biotic stresses of food crops in the country.

Keywords


Agriculture, Biotic Stress, Crops, Food Security, Management.

References





DOI: https://doi.org/10.18520/cs%2Fv121%2Fi1%2F26-36