Open Access Open Access  Restricted Access Subscription Access

Strain/Stress Evaluation of Dorsa Geikie using Chandrayaan-2 Terrain Mapping Camera-2 and Other Data


Affiliations
1 Space Applications Centre, Jodhpur Tekra, Ambawadi Vistar, Ahmedabad 380 015, India, India
2 Department of Geology, Asutosh College, 92, S.P. Mukherjee Road, Kolkata 700 026, India, India
 

The high-resolution panchromatic stereo camera Terrain Mapping Camera-2 (TMC-2) on-board the Indian Chandrayaan-2 mission sends images of the lunar surface at 5m resolution with a low to high sun-angle from an altitude of 100km. These images help identify subtle topographic variations and enable mapping of low-elevation landforms, one of which is a prominent ~220km long wrinkle ridge called the Dorsa Geikie (DG) lying within Mare Fecunditatis. The favourable resolutionof TMC-2 images and the digital elevation models provide opportunities for a detailed structural study of the DG and to reveal crustal shortening, cumulative contractional strain andpalaeostress regime responsible for thrust faulting for the first time.The time of deformation and formation of dorsa is also estimated for a holistic spatio-temporal understanding of deformation. This study presents initial analysis of the data received from TMC-2, and the accuracy of the results are likely to improve as the ingredients get amended and evolved in future

Keywords

Displacement-Length Scaling, Lunar Contraction, Mare Fecunditatis, Stress/Strain Evaluation, Wrinkle Ridges.
User
Notifications
Font Size

  • Chowdhury, A. R. et al., Terrain mapping camera-2 onboard Chandrayaan-2 orbiter. Curr. Sci., 2020, 118(4), 566.
  • International Astronomical Union, Dorsa Geikie, Gazetteer of Planetary Nomenclature, Working Group for Planetary System Nomenclature, 1976.
  • Bryan, W. B., Wrinkle-ridges as deformed surface crust on ponded mare lava. Lunar Planet. Sci. Conf. Proc., 1973, 4, 93.
  • Schultz, R. A., Localization of bedding plane slip and backthrust faults above blind thrust faults: keys to wrinkle ridge structure. J. Geophys. Res.: Planets, 2000, 105(E5), 12035–12052; https:// doi.org/10.1029/1999JE001212.
  • Williams, N. R., Shirzaei, M., Bell III, J. F. and Watters, T. R., Inverse modeling of wrinkle ridge structures on the Moon and Mars. In AGU Fall Meeting Abstracts, Abstract id: P33C-2141, 2015.
  • Li, B., Ling, Z., Zhang, J., Chen, J., Ni, Y. and Liu, C., Displace-ment-length ratios and contractional strains of lunar wrinkle ridges in mare serenitatis and mare tranquillitatis. J. Struct. Geol., 2018, 109, 27–37.
  • Watters, T. R., Johnson, C. L. and Schultz, R. A., Lunar tectonics. In Planetary Tectonics (ed. Watters, T. R.), Cambridge University Press, 2010, vol. 11, pp. 11; 121.
  • Watters, T. R. et al., Evidence of recent thrust faulting on the Moon revealed by the lunar reconnaissance orbiter camera. Sci-ence, 2010, 329(5994), 936–940; doi:10.1126/science.1189590.
  • Solomon, S. C. and Head, J. W., Vertical movement in mare basins: relation to mare emplacement, basin tectonics, and lunar thermal history. J. Geophys. Res.: Solid Earth, 1979, 84(B4), 1667–1682; https://doi.org/10.1029/JB084iB04p01667.
  • Solomon, S. C. and Head, J. W., Lunar mascon basins: lava fill-ing, tectonics, and evolution of the lithosphere. Rev. Geophys., 1980, 18(1), 107–141; https://doi.org/10.1029/RG018i001p00107.
  • Head III, J. W. and Wilson, L., Lunar mare volcanism: stratigra-phy, eruption conditions, and the evolution of secondary crusts. Geochim. Cosmochim. Acta, 1992, 56(6), 2155–2175; https://doi.org/10.1016/0016-7037(92)90183-J.
  • Whitford-Stark, J. L., The geology of the lunar mare Fecunditatis. Lunar and Planetary Science Conference, Texas, USA, 1986, vol. 17, pp. 940–941.
  • Carr, M. H., Saunders, R. S., Strom, R. G. and Wilhelms, D. E., The geology of the terrestrial planets, Jet Propulsion Laboratory, NASA, USA, 1984, pp. 107–206.
  • Hiesinger, H., Head III, J. W., Wolf, U., Jaumann, R. and Neukum, G., New ages for basalts in Mare Fecunditatis based on crater size-frequency measurements. In Lunar and Planetary Science Conference, Texas, USA, 2006, vol. XXXVII, abstr. #1151.
  • Cadogan, P. H. and Turner, G., 40Ar–39Ar dating of LUNA 16 and LUNA 20 samples. Philos. Trans. R. Soc. London, Ser. A: Math. Phys. Sci., 1977, 284(1319), 167–177; https://doi.org/10.1098/ rsta.1977.0007.
  • Fernandes, V. A. and Burgess, R., Volcanism in mare fecunditatis and mare crisium: Ar–Ar age studies. Geochim. Cosmochim. Acta, 2005, 69(20), 4919–4934; https://doi.org/10.1016/j.gca. 2005.05.017.
  • Mason, R., Guest, J. E. and Cooke, G. N., An imbrium pattern of graben on the Moon. Proc. Geologists’ Assoc., 1976, 87(2), 161–168; https://doi.org/10.1016/S0016-7878(76)80008-9.
  • Garfinkle, R. A., Observing lunar wrinkle ridges. In Luna Cogni-ta, Springer, New York, USA, 2020, pp. 979–992; https://doi.org/10.1007/978-1-4939-1664-1_27.
  • Arya, A. S. et al., Morpho-tectonic evaluation of Dorsa-Geiki wrinkle ridge using Terrain Mapping Camera-2 onboard Chandry-aan-2. In Lunar and Planetary Science Conference, Texas, USA, 2020, abstr. #1386.
  • Chin, G. et al., Lunar reconnaissance orbiter overview: The instru-ment suite and mission. Space Sci. Rev., 2007, 129(4), 391–419.
  • Robinson, M. S. et al., Lunar reconnaissance orbiter camera (LROC) instrument overview. Space Sci. Rev., 2010, 150(1–4), 81–124.
  • Riris, H. et al., The lunar orbiter laser altimeter (LOLA) on NASA’s lunar reconnaissance orbiter (LRO) mission. In Confer-ence on lasers and Electro-optics. Optical Society of America, San Jose, USA, 2008, p. CMQ1.
  • Smith, D. E. et al., Initial observations from the lunar orbiter laser altimeter (LOLA). Geophys. Res. Lett., 2010, 37(18), L18204.
  • Michael, G. G. and Neukum, G., Planetary surface dating from crater size–frequency distribution measurements: partial resurfac-ing events and statistical age uncertainty. Earth Planet. Sci. Lett., 2010, 294(3–4), 223–229.
  • Kneissl, T., van Gasselt, S. and Neukum, G., Map-projection-independent crater size–frequency determination in GIS environ-ments – new software tool for ArcGIS. Planet. Space Sci., 2011, 59(11–12), 1243–1254; https://doi.org/10.1016/j.pss.2010.03.015.
  • Ruj, T., Komatsu, G., Pondrelli, M., Di Pietro, I. and Pozzobon, R., Morphometric analysis of a Hesperian aged Martian lobate scarp using high-resolution data. J. Struct. Geol., 2018, 113, 1–9; https://doi.org/10.1016/j.jsg.2018.04.018.
  • Neukum, G., Ivanov, B. A. and Hartmann, W. K., Cratering rec-ords in the inner solar system in relation to the lunar reference sys-tem. In Chronology and Evolution of Mars (eds Kallenbach, R., Geiss, J. and Hartmann, W. K.), Proceedings of an ISSI Workshop, Bern, Switzerland, 2000.
  • Chamberlin, R. T., 1910. The Appalachian folds of central Penn-sylvania. J. Geol., 2001, 18(3), 228–251.
  • Cowie, P. A. and Scholz, C. H., Displacement-length scaling rela-tionship for faults: data synthesis and discussion. J. Struct. Geol., 1992, 14(10), 1149–1156; https://doi.org/10.1016/0191-8141(92)90066-6.
  • Clark, R. M. and Cox, S. J. D., A modern regression approach to determining fault displacement-length scaling relationships. J. Struct. Geol., 18(2–3), 147–152; https://doi.org/10.1016/S0191-8141(96)80040-X.
  • Kim, Y. S., Peacock, D. C. and Sanderson, D. J., Fault damage zones. J. Struct. Geol., 1996, 26(3), 503–517; https://doi.org/ 10.1016/j.jsg.2003.08.002.
  • Kim, Y. S. and Sanderson, D. J., The relationship between dis-placement and length of faults: a review. Earth-Sci. Rev., 2005, 68(3–4), 317–334; https://doi.org/10.1016/j.earscirev.2004.06.003.
  • Schultz, R. A., Okubo, C. H. and Wilkins, S. J., Displacement-length scaling relations for faults on the terrestrial planets. J. Struct. Geol., 2006, 28(12), 2182–2193; https://doi.org/10.1016/ j.jsg.2006.03.034.
  • Yue, Z., Li, W., Di, K., Liu, Z. and Liu, J., Global mapping and analysis of lunar wrinkle ridges. J. Geophys. Res.: Planets, 2015, 120(5), 978–994.
  • Yue, Z., Michael, G. G., Di, K. and Liu, J., Global survey of lunar wrinkle ridge formation times. Earth Planet. Sci. Lett., 2017, 477, 14–20; https://doi.org/10.1016/j.epsl.2017.07.048.
  • Dasgupta, D., Kundu, A., De, K. and Dasgupta, N., Polygonal impact craters in the Thaumasia Minor, Mars: role of pre-existing 1. Chowdhury, A. R. et al., Terrain mapping camera-2 onboard Chandrayaan-2 orbiter. Curr. Sci., 2020, 118(4), 566.
  • International Astronomical Union, Dorsa Geikie, Gazetteer of Planetary Nomenclature, Working Group for Planetary System Nomenclature, 1976.
  • Bryan, W. B., Wrinkle-ridges as deformed surface crust on ponded mare lava. Lunar Planet. Sci. Conf. Proc., 1973, 4, 93.
  • Schultz, R. A., Localization of bedding plane slip and backthrust faults above blind thrust faults: keys to wrinkle ridge structure. J. Geophys. Res.: Planets, 2000, 105(E5), 12035–12052; https://doi.org/10.1029/1999JE001212.
  • Williams, N. R., Shirzaei, M., Bell III, J. F. and Watters, T. R., Inverse modeling of wrinkle ridge structures on the Moon and Mars. In AGU Fall Meeting Abstracts, Abstract id: P33C-2141, 2015.
  • Li, B., Ling, Z., Zhang, J., Chen, J., Ni, Y. and Liu, C., Displace-ment-length ratios and contractional strains of lunar wrinkle ridges in mare serenitatis and mare tranquillitatis. J. Struct. Geol., 2018, 109, 27–37.
  • Watters, T. R., Johnson, C. L. and Schultz, R. A., Lunar tectonics. In Planetary Tectonics (ed. Watters, T. R.), Cambridge University Press, 2010, vol. 11, pp. 11; 121.
  • Watters, T. R. et al., Evidence of recent thrust faulting on the Moon revealed by the lunar reconnaissance orbiter camera. Sci-ence, 2010, 329(5994), 936–940; doi:10.1126/science.1189590.
  • Solomon, S. C. and Head, J. W., Vertical movement in mare basins: relation to mare emplacement, basin tectonics, and lunar thermal history. J. Geophys. Res.: Solid Earth, 1979, 84(B4), 1667–1682; https://doi.org/10.1029/JB084iB04p01667.
  • Solomon, S. C. and Head, J. W., Lunar mascon basins: lava fill-ing, tectonics, and evolution of the lithosphere. Rev. Geophys., 1980, 18(1), 107–141; https://doi.org/10.1029/RG018i001p00107.
  • Head III, J. W. and Wilson, L., Lunar mare volcanism: stratigra-phy, eruption conditions, and the evolution of secondary crusts. Geochim. Cosmochim. Acta, 1992, 56(6), 2155–2175; https://doi.org/10.1016/0016-7037(92)90183-J.
  • Whitford-Stark, J. L., The geology of the lunar mare Fecunditatis. Lunar and Planetary Science Conference, Texas, USA, 1986, vol. 17, pp. 940–941.
  • Carr, M. H., Saunders, R. S., Strom, R. G. and Wilhelms, D. E., The geology of the terrestrial planets, Jet Propulsion Laboratory, NASA, USA, 1984, pp. 107–206.
  • Hiesinger, H., Head III, J. W., Wolf, U., Jaumann, R. and Neukum, G., New ages for basalts in Mare Fecunditatis based on crater size-frequency measurements. In Lunar and Planetary Science Conference, Texas, USA, 2006, vol. XXXVII, abstr. #1151.
  • Cadogan, P. H. and Turner, G., 40Ar–39Ar dating of LUNA 16 and LUNA 20 samples. Philos. Trans. R. Soc. London, Ser. A: Math. Phys. Sci., 1977, 284(1319), 167–177; https://doi.org/10.1098/ rsta.1977.0007.
  • Fernandes, V. A. and Burgess, R., Volcanism in mare fecunditatis and mare crisium: Ar–Ar age studies. Geochim. Cosmochim. Acta, 2005, 69(20), 4919–4934; https://doi.org/10.1016/j.gca. 2005.05.017.
  • Mason, R., Guest, J. E. and Cooke, G. N., An imbrium pattern of graben on the Moon. Proc. Geologists’ Assoc., 1976, 87(2), 161–168; https://doi.org/10.1016/S0016-7878(76)80008-9.
  • Garfinkle, R. A., Observing lunar wrinkle ridges. In Luna Cogni-ta, Springer, New York, USA, 2020, pp. 979–992; https://doi.org/ 10.1007/978-1-4939-1664-1_27.
  • Arya, A. S. et al., Morpho-tectonic evaluation of Dorsa-Geiki wrinkle ridge using Terrain Mapping Camera-2 onboard Chandry-aan-2. In Lunar and Planetary Science Conference, Texas, USA, 2020, abstr. #1386.
  • Chin, G. et al., Lunar reconnaissance orbiter overview: The instru-ment suite and mission. Space Sci. Rev., 2007, 129(4), 391–419.
  • Robinson, M. S. et al., Lunar reconnaissance orbiter camera (LROC) instrument overview. Space Sci. Rev., 2010, 150(1–4), 81–124.
  • Riris, H. et al., The lunar orbiter laser altimeter (LOLA) on NASA’s lunar reconnaissance orbiter (LRO) mission. In Confer-ence on lasers and Electro-optics. Optical Society of America, San Jose, USA, 2008, p. CMQ1.
  • Smith, D. E. et al., Initial observations from the lunar orbiter laser altimeter (LOLA). Geophys. Res. Lett., 2010, 37(18), L18204.
  • Michael, G. G. and Neukum, G., Planetary surface dating from crater size–frequency distribution measurements: partial resurfac-ing events and statistical age uncertainty. Earth Planet. Sci. Lett., 2010, 294(3–4), 223–229.
  • Kneissl, T., van Gasselt, S. and Neukum, G., Map-projection-independent crater size–frequency determination in GIS environ-ments – new software tool for ArcGIS. Planet. Space Sci., 2011, 59(11–12), 1243–1254; https://doi.org/10.1016/j.pss.2010.03.015.
  • Ruj, T., Komatsu, G., Pondrelli, M., Di Pietro, I. and Pozzobon, R., Morphometric analysis of a Hesperian aged Martian lobate scarp using high-resolution data. J. Struct. Geol., 2018, 113, 1–9; https://doi.org/10.1016/j.jsg.2018.04.018.
  • Neukum, G., Ivanov, B. A. and Hartmann, W. K., Cratering rec-ords in the inner solar system in relation to the lunar reference sys-tem. In Chronology and Evolution of Mars (eds Kallenbach, R., Geiss, J. and Hartmann, W. K.), Proceedings of an ISSI Workshop, Bern, Switzerland, 2000.
  • Chamberlin, R. T., 1910. The Appalachian folds of central Penn-sylvania. J. Geol., 2001, 18(3), 228–251.
  • Cowie, P. A. and Scholz, C. H., Displacement-length scaling rela-tionship for faults: data synthesis and discussion. J. Struct. Geol., 1992, 14(10), 1149–1156; https://doi.org/10.1016/0191-8141(92)90066-6.
  • Clark, R. M. and Cox, S. J. D., A modern regression approach to determining fault displacement-length scaling relationships. J. Struct. Geol., 18(2–3), 147–152; https://doi.org/10.1016/S0191-8141(96)80040-X.
  • Kim, Y. S., Peacock, D. C. and Sanderson, D. J., Fault damage zones. J. Struct. Geol., 1996, 26(3), 503–517; https://doi.org/ 10.1016/j.jsg.2003.08.002.
  • Kim, Y. S. and Sanderson, D. J., The relationship between dis-placement and length of faults: a review. Earth-Sci. Rev., 2005, 68(3–4), 317–334; https://doi.org/10.1016/j.earscirev.2004.06.003.
  • Schultz, R. A., Okubo, C. H. and Wilkins, S. J., Displacement-length scaling relations for faults on the terrestrial planets. J. Struct. Geol., 2006, 28(12), 2182–2193; https://doi.org/10.1016/ j.jsg.2006.03.034.
  • Yue, Z., Li, W., Di, K., Liu, Z. and Liu, J., Global mapping and analysis of lunar wrinkle ridges. J. Geophys. Res.: Planets, 2015, 120(5), 978–994.
  • Yue, Z., Michael, G. G., Di, K. and Liu, J., Global survey of lunar wrinkle ridge formation times. Earth Planet. Sci. Lett., 2017, 477, 14–20; https://doi.org/10.1016/j.epsl.2017.07.048.
  • Dasgupta, D., Kundu, A., De, K. and Dasgupta, N., Polygonal impact craters in the Thaumasia Minor, Mars: role of pre-existing faults in their formation. J. Indian Soc. Remote Sensing, 2018, 47(2), 257–265; https://doi.org/10.1007/s12524-018-0919-3.
  • Dawers, N. H., Anders, M. H. and Scholz, C. H., Growth of nor-mal faults: displacement-length scaling. Geology, 1993, 21(12), 1107–1110; https://doi.org/10.1130/0091-7613(1993)021%3C1107: GONFDL%3E2.3.CO;2.
  • Roggon, L., Hetzel, R., Hiesinger, H., Clark, J. D., Hampel, A. and van der Bogert, C. H., Length-displacement scaling of thrust faults on the Moon and the formation of uphill-facing scarps. Icarus, 2017, 292, 111–124; https://doi.org/10.1016/j.icarus.2016. 12.034.
  • Peacock, D. C. P. and Sanderson, D. J., Displacements, segment linkage and relay ramps in normal fault zones. J. Struct. Geol., 1991, 13(6), 721–733; https://doi.org/10.1016/0191-8141(91) 90033-F.
  • Moon, P. and Spencer, D. E., Field Theory Handbook: Including Coordinate Systems, Differential Equations and their Solutions, Springer, 2012.
  • Marshak, S. and Mitra, G., Basic Methods of Structural Geology, Prentice Hall, New Jersey, USA, 1988.
  • Epard, J. L. and Groshong Jr, R. H., Excess area and depth to detachment. AAPG Bull., 1993, 77(8), 1291–1302; https://doi.org/ 10.1306/BDFF8E66-1718-11D7-8645000102C1865D.
  • Dunne, W. M. and Ferrill, D. A., Blind thrust systems. Geology, 1988, 16(1), 33–36; https://doi.org/10.1130/0091-7613(1988)016%3C0033:BTS%3E2.3.CO;2.
  • Anderson, E. M., The dynamics of faulting. Trans. Edin. Geol. Soc., 1905, 8(3), 387–402.
  • Plescia, J. B. and Golombek, M. P., Origin of planetary wrinkle ridges based on the study of terrestrial analogs. Geol. Soc. Am. Bull., 1986, 97(11), 1289–1299; https://doi.org/10.1130/0016-7606(1986)97%3C1289:OOPWRB%3E2.0.CO;2.
  • Scholz, C. H., Dawers, N. H., Yu, J. Z., Anders, M. H. and Cowie, P. A., Fault growth and fault scaling laws: preliminary results. J. Geophys. Res.: Solid Earth, 1993, 98(B12), 21951–21961; https://doi.org/10.1029/93JB01008.
  • Schultz, R. A. and Fossen, H., Displacement-length scaling in three dimensions: the importance of aspect ratio and application to deformation bands. J. Struct. Geol., 2002, 24(9), 1389–1411; https://doi.org/10.1016/S0191-8141(01)00146-8.
  • Gillespie, P. A., Walsh, J. T. and Watterson, J., Limitations of dimension and displacement data from single faults and the conse-quences for data analysis and interpretation. J. Struct. Geol., 1992, 14, 1157–1157.
  • Žalohar, J., T-TECTO 3.0 professional integrated software for structural analysis of fault-slip data. Introductory Tutorial, 2009, p. 56.
  • Fagin, S. W., Worrall, D. M. and Muehlberger, W. R., Lunar mare ridge orientation – implications for lunar tectonic models. In Lunar and Planetary Science Conference Proceedings, Texas, USA, 1978, vol. 9, pp. 3473–3479.
  • Ono, T. et al., Lunar radar sounder observations of subsurface layers under the nearside maria of the Moon. Science, 2009, 323(5916), 909–912; doi:10.1126/science.1165988.
  • Hartmann, W. K. and Neukum, G., Cratering chronology and the evolution of Mars. In Chronology and Evolution of Mars, Springer, Dordrecht, The Netherlands, 2001, pp. 165–194.
  • Kneissl, T. and Michael, G., Crater size–frequency measurements on linear features: buffered crater counting in ArcGIS. In 44th
  • Lunar and Planetary Science Conference, Texas, USA, 2013, ab-str. #1079.
  • Kneissl, T., Michael, G. G., Platz, T. and Walter, S. H. G., Age determination of linear surface features using the buffered crater counting approach – case studies of the Sirenum and Fortuna Fossae graben systems on Mars. Icarus, 2015, 250, 384–394; https://doi.org/10.1016/j.icarus.2014.12.008.
  • Fassett, C. I. and Head III, J. W., The timing of martian valley network activity: constraints from buffered crater counting. Icarus, 2008, 195(1), 61–89.
  • Fassett, C. I., Head, J. W., Kadish, S. J., Mazarico, E., Neumann, G. A., Smith, D. E. and Zuber, M. T., Lunar impact basins: stratig-raphy, sequence and ages from superposed impact crater popula-tions measured from Lunar Orbiter Laser Altimeter (LOLA) data. J. Geophys. Res.: Planets, 2012, 117(E12), E00806.
  • Golombek, M. P., Plescia, J. B. and Franklin, B. J., Faulting and folding in the formation of planetary wrinkle ridges. In Lunar and Planetary Science Conference Proceedings, Texas, USA, 1991, vol. 21, pp. 679–693.
  • Browne, M. W., Predictive validity of a linear regression equation. Br. J. Math. Stat. Psychol., 1975, 28(1), 79–87.
  • Elliott, D., The motion of thrust sheets. J. Geophys. Res., 1976, 81(5), 949–963; doi:10.1029/JB081i005p00949.
  • Scholz, C. H. and Cowie, P. A., Determination of total strain from faulting using slip measurements. Nature, 1990, 346(6287), 837–839.
  • Golombek, M. P., Anderson, F. S. and Zuber, M. T., Martian wrinkle ridge topography: evidence for subsurface faults from MOLA. J. Geophys. Res.: Planets, 2001, 106(E10), 23811–23821; https://doi.org/10.1029/2000JE001308.
  • Watters, T. R., Wrinkle ridge assemblages on the terrestrial planets. J. Geophys. Res.: Solid Earth, 1988, 93(B9), 10236–10254.
  • Maxwell, T. A., El-Baz, F. and Ward, S. H., Distribution, morphology, and origin of ridges and arches in Mare Serenitatis. Geol. Soc. Am. Bull., 1975, 86(9), 1273–1278; https://doi.org/ 10.1130/0016-7606(1975)86%3C1273:DMAOOR%3E2.0.CO;2.
  • Klimczak, C., Limits on the brittle strength of planetary litho-spheres undergoing global contraction. J. Geophys. Res.: Planets, 2015, 120(12), 2135–2151; https://doi.org/10.1002/2015JE004851.

Abstract Views: 272

PDF Views: 94




  • Strain/Stress Evaluation of Dorsa Geikie using Chandrayaan-2 Terrain Mapping Camera-2 and Other Data

Abstract Views: 272  |  PDF Views: 94

Authors

A. S. Arya
Space Applications Centre, Jodhpur Tekra, Ambawadi Vistar, Ahmedabad 380 015, India, India
Joyita Thapa
Department of Geology, Asutosh College, 92, S.P. Mukherjee Road, Kolkata 700 026, India, India
Abhik Kundu
Department of Geology, Asutosh College, 92, S.P. Mukherjee Road, Kolkata 700 026, India, India
Rwiti Basu
Department of Geology, Asutosh College, 92, S.P. Mukherjee Road, Kolkata 700 026, India, India
Amitabh
Space Applications Centre, Jodhpur Tekra, Ambawadi Vistar, Ahmedabad 380 015, India, India
Ankush Kumar
Space Applications Centre, Jodhpur Tekra, Ambawadi Vistar, Ahmedabad 380 015, India, India
Arup Roychowdhury
Space Applications Centre, Jodhpur Tekra, Ambawadi Vistar, Ahmedabad 380 015, India, India

Abstract


The high-resolution panchromatic stereo camera Terrain Mapping Camera-2 (TMC-2) on-board the Indian Chandrayaan-2 mission sends images of the lunar surface at 5m resolution with a low to high sun-angle from an altitude of 100km. These images help identify subtle topographic variations and enable mapping of low-elevation landforms, one of which is a prominent ~220km long wrinkle ridge called the Dorsa Geikie (DG) lying within Mare Fecunditatis. The favourable resolutionof TMC-2 images and the digital elevation models provide opportunities for a detailed structural study of the DG and to reveal crustal shortening, cumulative contractional strain andpalaeostress regime responsible for thrust faulting for the first time.The time of deformation and formation of dorsa is also estimated for a holistic spatio-temporal understanding of deformation. This study presents initial analysis of the data received from TMC-2, and the accuracy of the results are likely to improve as the ingredients get amended and evolved in future

Keywords


Displacement-Length Scaling, Lunar Contraction, Mare Fecunditatis, Stress/Strain Evaluation, Wrinkle Ridges.

References





DOI: https://doi.org/10.18520/cs%2Fv121%2Fi1%2F94-102