Open Access Open Access  Restricted Access Subscription Access

Project AstroSat: Five Years of Operations and Continuing


Affiliations
1 Raman Research Institute, Bengaluru 560 08, India
2 ISRO Headquarters, Bengaluru 560 231, India
3 U.R. Rao Satellite Centre, Bengaluru 560 017, India
 

India’s first dedicated multi-wavelength satellite, AstroSat, was launched by PSLV C30 from the Satish Dhawan Space Centre, Sriharikota, Andhra Pradesh on 28 September 2015. It is India’s first multiwavelength observatory. AstroSat carries five scientific payloads and is capable of simultaneous observations from ultraviolet to very hard X-rays. It has completed five years of on-board operations in September 2020 as a proposal-based observatory. Currently, it has close to 1500 global users and has resulted in more than 150 articles in peer-reviewed journals. This article is an overview providing a brief description of the AstroSat mission and some recent results using data from this unique Indian space observatory.

Keywords

Multi-Wavelength Satellite, Proposal-Based Space Observatory, Scientific Payloads, Ultraviolet and X-Ray Astronomy.
User
Notifications
Font Size

  • Marar, T. M. K. et al., The gamma-ray burst experiment onboard the SROSS-C satellite. A&A, 1994, 283, 698–704.
  • Agrawal, P. C. et al., X-ray astronomy experiment on the Indian Satellite IRS-P3. JKASS, 1997, 29, 429.
  • Agrawal, P. C., ASTROSAT satellite. ASPC, 2001, 251, 512–513.
  • Koteswara Rao, V. et al., The scientific objectives of the ASTROSAT mission of ISRO. Acta Astron., 2009, 65(1–2), 6–17.
  • Singh, K. P. et al., AstroSat mission. SPIE, 2014, 9144, 1.
  • Agrawal P. C., AstroSat: from inception to realisation and launch. J. Ap. A, 2017, 38, 27.
  • Agrawal, P. C. et al., Large area X-ray proportional counter (LAXPC) instrument on AstroSat and some preliminary results from its performance in the orbit. J. Ap. A, 2017, 38, 30.
  • Antia, H. M., et al., Calibration of the large area X-ray proportional counter (LAXPC) instrument on board AstroSat. ApJS, 2017, 231, 10.
  • Bhalerao, V. et al., The cadmium zinc telluride imager on AstroSat. J. Ap. A, 2017, 38, 31.
  • Navalgund, K. H. et al., AstroSat – configuration and realization. J. Ap. A, 2017, 38, 34.
  • Ramadevi, M. C. et al., Early in-orbit performance of scanning sky monitor onboard AstroSat. J. Ap. A, 2017, 38, 32.
  • Ramadevi, M. C. et al., Scanning sky monitor (SSM) onboard AstroSat. Exp Astron, 2017, 44, 11–23.
  • Rao, A. R. et al., Cadmium–zinc–telluride imager on-board AstroSat: a multi-faceted hard X-ray instrument. Curr. Sci., 2017, 113(4), 595–598.
  • Rao, A. R. et al., Charged particle monitor on the Astrosat mission. J. Ap. A, 2017, 38, 33.
  • Seetha, S. and Megala, Overview of the AstroSat mission. Curr. Sci., 2017, 113, 579–582.
  • Singh, K. P., et al., Proc. SPIE, in Space Telescopes and Instrumentation 2016: Ultraviolet to Gamma Ray. 9905, p. 99051E.
  • Singh, K. P. et al., Soft X-ray focusing telescope aboard AstroSat design, characteristics and performance. J. Ap. A, 2017, 38, 29.
  • Tandon, S. N. et al., In-orbit performance of UVIT and first results. J. Ap. A, 2017, 38, 28.
  • Tandon, S. N. et al., In-orbit calibrations of the ultraviolet imaging telescope. Astron. J., 2017, 154, 128–141.
  • Pandiyan, R. et al., Planning and scheduling of payloads of AstroSat during initial and normal phase observations. J. Ap. A, 2017, 38, 35.
  • Saha, K. et al., AstroSat detection of Lyman continuum emission from a z = 1.42 galaxy. Nat. Astron., 2020, 164.
  • Steidel, C. C. et al., A survey of star-forming galaxies in the 1.4 . z . 2.5 redshift desert: overview. ApJ, 2004, 604, 534– 550.
  • Renzini, A. and Daddi, E., Wandering in the redshift desert. Messenger, 2009, 137, 41–45.
  • Leahy, D. A., Bianchi, L. and Postma, J. E., ASTROSAT/UVIT survey of M31, first results UV-bright stars in the bulge. Astron. J., 2018, 156, 269–280.
  • Leahy, D. A. et al., AstroSat UVIT survey of M31: point-source catalog. APJSS, 2020, 247, 47–62.
  • Goswami, P. et al., Unravelling the unusually curved X-ray spectrum of RGB J0710+591 using AstroSat observations. MNRAS, 2020, 492, 796–803.
  • Leahy, D. A., Postma, J. and Chen, Y., AstroSat UVIT observations of Her X-1. ApJ, 2020, 889, 131–142.
  • Bala, S. et al., Time evolution of cyclotron line of Her X-1: a detailed statistical analysis including new AstroSat data. MNRAS, 2020, 497, 1029–1042.
  • Roy, J. et al., LAXPC/AstroSat study of ~1 and ~2 mHz quasiperiodic oscillations in the Be/X-ray binary 4U 0115+63 during its 2015 outburst. ApJ, 2019, 872, 33–44.
  • Pahari, M. et al., X-ray timing analysis of Cyg X-3 using AstroSat/LAXPC: detection of milli-hertz quasi-periodic oscillations during the flaring hard X-ray state. ApJ, 2017, 849, 16–29.
  • Mudambi, S. et al., Unveiling the temporal properties of MAXI J1820+070 through AstroSat observations. ApJ. Lett., 2020, 889, L17–L24.
  • Sreehari, H. et al., AstroSat view of MAXI J1535-571: broad-band spectro-temporal features. MNRAS, 2019, 487, 928–941.
  • Beri, A. et al., Thermonuclear X-ray bursts in rapid succession in 4U 1636-536 with AstroSat-LAXPC. MNRAS, 2019, 482, 4397– 4407.
  • Yadav, J. S. et al., Astrosat/LAXPC reveals the high-energy variability of GRS 1915+105 in the X class. ApJ, 2016, 833, 27– 36.
  • Bhulla, Y. et al., AstroSat observation of GX 5-1: spectral and timing evolution. RAA, 2019, 19, 114–136.
  • Belloni, T. M. et al., A variable-frequency HFQPO in GRS 1915+105 as observed with AstroSat. MNRAS, 2019, 489, 1037– 1043.
  • Verdhan, C. J. et al., AstroSat/LAXPC detection of millisecond phenomena in 4U 1728–34. ApJ, 2017, 841, 41–46.
  • Misra, R. et al., Identification of QPO frequency of GRS 1915+105 as the relativistic dynamic frequency of a truncated accretion disk. ApJ. Lett., 2020, 889, L36–L42.
  • Bhattacharyya, S. et al., Blazar variability: a study of nonstationarity and the flux-rms relation. ApJ, 2020, 897, 25–35.
  • Pahari, M. et al., AstroSat and Chandra view of the high soft state of 4U 1630-47 (4U 1630-472): evidence of the disk wind and a rapidly spinning black hole. ApJ, 2018, 867, 86–96.
  • Baby, B. E. et al., AstroSat and MAXI view of the black hole binary 4U 1630-472 during 2016 and 2018 outbursts. MNRAS, 2020, 497, 1197–1211
  • Bhargava, Y. et al., Spectro-timing analysis of MAXI J1535-571 using AstroSat. MNRAS, 2019, 488, 720–727.
  • Sridhar, N. et al., Broad-band reflection spectroscopy of MAXI J1535-571 using AstroSat: estimation of black hole mass and spin. MNRAS, 2019, 487, 4221–4229.
  • Maitra, C. et al., Detection of a cyclotron line in SXP 15.3 during its 2017 outburst. MNRAS, 2018, 480, L136.
  • Varun, Maitra, C. et al., Probing the cyclotron line characteristics of 4U 1538-522 using AstroSat-LAXPC. MNRAS, 2019, 484, L1– L6.
  • Varun, Pradhan, P. et al., Pulse phase variation of the cyclotron line in HMXB 4U 1907+09 with AstroSat LAXPC. ApJ, 2019, 880, 61–68.
  • Bhattacharyya, S., Yadav, J. S. and Sridhar, N., Effects of thermonuclear X-ray bursts on non-burst emissions in the soft state of 4U 1728-34. ApJ, 2018, 860, 88.
  • Mukerjee, K., Antia, H. M. and Katoch, T., AstroSat observations of GRO J2058+42 during the 2019 outburst. ApJ, 2020, 897, 73– 91.
  • Rao, N. K. et al., Planetary nebulae with UVIT around the Bow Tie nebula (NGC 40). A&A, 2018, 609, L1–L4.
  • Jadhav, V., Sindhu, N. and Annapurni S., UVIT Open Cluster Study. II. Detection of extremely low mass white dwarfs and post– mass transfer binaries in M67. ApJ, 2019, 886, 13–35.
  • Lalitha, S. et al., Proxima Centauri – the nearest planet host observed simultaneously with AstroStat, Chandra, and HST. MNRAS, 2020, 498, 3658–3663.
  • Jain, R., Vig, S. and Ghosh, S. K., Investigation of the globular cluster NGC 2808 with the ultra-violet imaging telescope. MNRAS, 2019, 485, 2877–2888.
  • Rahna, P. T. et al., A study of the star-forming regions in the spiral galaxy NGC 2336 using the Ultraviolet Imaging Telescope (UVIT). MNRAS, 2018, 481, 1212.
  • George, K. et al., UVIT view of ram-pressure stripping in action: star formation in the stripped gas of the GASP jellyfish galaxy JO201 in Abell 85. MNRAS, 2018, 479, 4126–4135.
  • Vadawale, S. et al., Phase resolved X-ray polarimetry of the Crab pulsar with the AstroSat CZT Imager. Nature Astron., 2018, 2, 50–55.
  • Sharma, V. et al., Spectropolarimetric analysis of prompt emission of GRB 160325A: jet with evolving environment of internal shocks. MNRAS, 2020, 493, 5218–5232.
  • Bhalerao, V. et al., A tale of two transients: GW 170104 and GRB 170105A. ApJ, 2017, 845, 152–162.

Abstract Views: 406

PDF Views: 145




  • Project AstroSat: Five Years of Operations and Continuing

Abstract Views: 406  |  PDF Views: 145

Authors

S. Seetha
Raman Research Institute, Bengaluru 560 08, India
V. Girish
ISRO Headquarters, Bengaluru 560 231, India
V. Koteswara Rao
U.R. Rao Satellite Centre, Bengaluru 560 017, India

Abstract


India’s first dedicated multi-wavelength satellite, AstroSat, was launched by PSLV C30 from the Satish Dhawan Space Centre, Sriharikota, Andhra Pradesh on 28 September 2015. It is India’s first multiwavelength observatory. AstroSat carries five scientific payloads and is capable of simultaneous observations from ultraviolet to very hard X-rays. It has completed five years of on-board operations in September 2020 as a proposal-based observatory. Currently, it has close to 1500 global users and has resulted in more than 150 articles in peer-reviewed journals. This article is an overview providing a brief description of the AstroSat mission and some recent results using data from this unique Indian space observatory.

Keywords


Multi-Wavelength Satellite, Proposal-Based Space Observatory, Scientific Payloads, Ultraviolet and X-Ray Astronomy.

References





DOI: https://doi.org/10.18520/cs%2Fv121%2Fi2%2F214-221