The PDF file you selected should load here if your Web browser has a PDF reader plug-in installed (for example, a recent version of Adobe Acrobat Reader).

If you would like more information about how to print, save, and work with PDFs, Highwire Press provides a helpful Frequently Asked Questions about PDFs.

Alternatively, you can download the PDF file directly to your computer, from where it can be opened using a PDF reader. To download the PDF, click the Download link above.

Fullscreen Fullscreen Off


Climate change induced due to the magnitudinal rise in proportions of carbon dioxide (CO2) and nitrous oxide (N2O) in the environment has emerged as an indubitable concern across the globe. Hence, the impact of various organic forms of manure on greenhouse gas (GHG) emissions from the soil and global warming potential (GWP) was studied in pearl millet + Melia dubia agri-silvi system. Replacing 25% of nitrogen with farmyard manure (FYM), poultry manure and pongamia green leaf manure (PGLM) elevated CO2 emissions by 8.81%, 12.39%, 15.88% and N2O emissions by 47.5%, 49.8% and 55.8% respectively, compared to full recommended dose of fertilizer through neem-coated urea treatment. Also, 100% recommended dose of fertilizer (RDF) using neem-coated urea is effective in reducing GWP by 19% over 100% RDF through normal urea. GWP of all the treatments ranged from 1029 (unfertilized) to 1807 kg CO2 eq. ha–1 (sole crop without trees). The study also reported lower CO2 and N2O emissions under the tree compared to sole crop without trees, which suggests that agroforestry would reduce the overall GHG emissions. Also, use of organic manure along with inorganic fertilizers showed better carbon efficiency ratio and soil fertility status in spite of increase in GWP.

Keywords

Agri-silvi system, carbon dioxide, global warming potential, greenhouse gases, nitrous oxide.
User
Notifications
Font Size