Open Access Open Access  Restricted Access Subscription Access

Role of peptidyl-prolyl cis–trans isomerases in infectious diseases and host–pathogen interactions


Affiliations
1 Crystallography and Molecular Biology Division, Saha Institute of Nuclear Physics, 1/AF-Bidhannagar, Kolkata 700 064, India; Homi Bhabha National Institute, Anushaktinagar, Mumbai 400 094, India
 

Peptidyl-prolyl cis–trans isomerases (PPIases) catalyse the cis–trans isomerization of Ca atoms about the peptide bond preceding a proline residue, thereby regulating a conformational switch which controls a plethora of cellular processes. PPIases play a key role in the survival, reproduction, proliferation and virulence of microbial pathogens vis-à-vis their human host. In addition, human PPIases either aid or retard viral replication and modulate host immune response. The article discusses the structure–function relationships of PPIases in the context of microbial virulence (with an emphasis on viruses), and on targeting PPIases for COVID-19, responsible for untold human sufferings.

Keywords

Host immune response, infectious diseases, pathogenicity, virulence, peptidyl-prolyl cis–trans isomerase
User
Notifications
Font Size

  • Unal, C. M. and Steinert, M., Microbial peptidyl-prolyl cis/trans isomerases (PPIases): virulence factors and potential alternative drug targets. Microbiol. Mol. Biol. Rev., 2014, 78, 544–571.
  • Stewart, D. E., Sarkar, A. and Wampler, J. E., Occurrence and role of cis peptide bonds in protein structures. J. Mol. Biol., 1990, 214, 253–260.
  • Cheng, C. W. and Tse, E., PIN1 in cell cycle control and cancer. Front. Pharmacol., 2018, 9, 1367.
  • Gong, Z. et al., Cyclophilin A is overexpressed in hepatocellular carcinoma and is associated with the cell cycle. Anticancer Res., 2017, 37, 4443–4447.
  • Aghdasi, B. et al., FKBP12, the 12-kDa FK506-binding protein, is a physiologic regulator of the cell cycle. Proc. Natl. Acad. Sci. USA, 2001, 98, 2425–2430.
  • Hu, X. and Chen, L. F., Pinning down the transcription: a role for peptidyl-prolyl cis–trans isomerase Pin1 in gene expression. Front. Cell Dev. Biol., 2020, 8, 179.
  • Nakatsu, Y. et al., Physiological and pathogenic roles of prolyl isomerase Pin1 in metabolic regulations via multiple signal transduction pathway modulations. Int. J. Mol. Sci., 2016, 17, 1495.
  • Nath, P. R., Dong, G., Braiman, A. and Isakov, N., In vivo regulation of human CrkII by cyclophilin A and FK506-binding protein. Biochem. Biophys. Res. Commun., 2016, 470, 411–416.
  • Wang, Z., Feng, J., Yu, J. and Chen, G., FKBP12 mediates necroptosis by initiating RIPK1–RIPK3–MLKL signal transduction in response to TNF receptor 1 ligation. J. Cell Sci., 2019, 132, jcs227777.
  • Tzelepis, F. et al., Mitochondrial cyclophilin D regulates T cell metabolic responses and disease tolerance to tuberculosis. Sci. Immunol., 2018, 3, eaar4135.
  • Tozzi, L. et al., Single-nucleotide polymorphism of the FKBP5 gene and childhood maltreatment as predictors of structural changes in brain areas involved in emotional processing in depression. Neuropsychopharmacology, 2016, 41, 487–497.
  • Yu, J. H., Im, C. Y. and Min, S. H., Function of Pin1 in cancer development and its inhibitors as cancer therapeutics. Front. Cell Dev. Biol., 2020, 8, 120.
  • Rath, D. et al., Platelet surface expression of cyclophilin A is associated with increased mortality in patients with symptomatic coronary artery disease. J. Thromb. Haemost., 2020, 18, 234–242.
  • Wang, L., Zhou, Y., Chen, D. and Lee, T. H., Peptidyl-prolyl cis/trans isomerase Pin1 and Alzheimer’s disease. Front. Cell Dev. Biol., 2020, 8, 355.
  • Lu, K. P., Finn, G., Lee, T. H. and Nicholson, L. K., Prolyl cis– trans isomerization as a molecular timer. Nature Chem. Biol., 2007, 3, 619–629.
  • Rajiv, C. and Davis, T. L., Structural and functional insights into human nuclear cyclophilins. Biomolecules, 2018, 8, 161.
  • Prakash, A., Rajan, S. and Yoon, H. S., Crystal structure of the FK506 binding domain of human FKBP25 in complex with FK506. Protein Sci., 2016, 25, 905–910.
  • Harikishore, A. and Sup Yoon, H., Immunophilins: structures, mechanisms and ligands. Curr. Mol. Pharmacol., 2015, 9, 37–47.
  • Jin, L. and Harrison, S. C., Crystal structure of human calcineurin complexed with cyclosporin A and human cyclophilin. Proc. Natl. Acad. Sci. USA, 2002, 99, 13522–13526.
  • Aylett, C. H. S., Sauer, E., Imseng, S., Hall, M. N., Ban, N. and Maier, T., Architecture of human mTOR complex. Science, 2016, 351, 48–52.
  • Ranganathan, R., Lu, K. P., Hunter, T. and Noel, J. P., Structural and functional analysis of the mitotic rotamase Pin1 suggests substrate recognition is phosphorylation dependent. Cell, 1997, 89, 875–886.
  • Fischer, G. and Fanghänel, J., Insights into the catalytic mechanism of peptidyl prolyl cis/trans isomerases. Front. Biosci., 2004, 9, 3453–3478.
  • Schiene-Fischer, C., Multidomain peptidyl prolyl cis/trans isomerases. Biochim. Biophys. Acta, 2015, 1850, 2005–2016.
  • Cohen, A. et al., Streptococcus pneumoniae cell wall-localized trigger factor elicits a protective immune response and contributes to bacterial adhesion to the host. Sci. Rep., 2019, 9, 4295.
  • Bigot, A., Botton, E., Dubail, I. and Charbit, A., A homolog of Bacillus subtilis trigger factor in Listeria monocytogenes is involved in stress tolerance and bacterial virulence. Appl. Environ. Microbiol., 2006, 72, 6623–6631.
  • Wen, Z. T., Suntharaligham, P., Cvitkovitch, D. G. and Burne, R. A., Trigger factor in Streptococcus mutans is involved in stress tolerance, competence development, and biofilm formation. Infect. Immunol., 2005, 73, 219–225.
  • Lyon, W. R. and Caparon, M. G., Trigger factor-mediated prolyl isomerization influences maturation of the Streptococcus pyogenes cysteine protease. J. Bacteriol., 2003, 185, 3661–3667.
  • Ludlam, A. V., Moore, B. A. and Xu, Z., The crystal structure of ribosomal chaperone trigger factor from Vibrio cholerae. Proc. Natl. Acad. Sci. USA, 2004, 101, 13436–13441.
  • Ferbitz, L., Maier, T., Patzelt, H., Bukau, B., Deuerling, E. and Nenad, B., Trigger factor in complex with the ribosome forms a molecular cradle for nascent proteins. Nature, 2004, 431, 590– 596.
  • Cianciotto, N. P. and Fields, B. S., Legionella pneumophila mip gene potentiates intracellular infection of protozoa and human macrophages. Proc. Natl. Acad. Sci. USA, 1992, 89, 5188–5191.
  • Herrmann, M., Schuhmacher, A., Mühldorfer, I., Melchers, K., Prothmann, C. and Dammeier, S., Identification and characterization of secreted effector proteins of Chlamydophila pneumoniae TW183. Res. Microbiol., 2006, 157, 513–524.
  • Leuzzi, R. et al., Ng-MIP, a surface-exposed lipoprotein of Neisseria gonorrhoeae, has a peptidyl-prolyl cis/trans isomerase (PPIase) activity and is involved in persistence in macrophages. Mol. Microbiol., 2005, 58, 669–681.
  • Echenique-rivera, H. et al., Transcriptome analysis of Neisseria meningitidis in human whole blood and mutagenesis studies identify virulence factors involved in blood survival. PLoS Pathogens, 2011, 7, e1002027.
  • Lopez, J. M., Antiparra, R., Zimic, M., Sheen, P. and Maruenda, H., Backbone chemical shift assignment of macrophage infectivity potentiator virulence factor of Trypanosoma cruzi. Biomol. NMR Assign., 2019, 13, 21–25.
  • Moro, A., Ruiz-cabelio, F., Fernandez-cano, A., Stock, R. P. and Gonzalez, A., Secretion by Trypanosoma cruzi of a peptidyl-prolyl cis-trans isomerase involved in cell infection. EMBO J., 1995, 14, 2483–2490.
  • Wagner, C. et al., Collagen binding protein Mip enables Legionella pneumophila to transmigrate through a barrier of NCI-H292 lung epithelial cells and extracellular matrix. Cell. Microbiol., 2007, 9, 450–462.
  • Riboldi-Tunnicliffe, A. et al., Crystal structure of Mip, a prolylisomerase from Legionella pneumophila. Nature Struct. Biol., 2001, 8, 779–783.
  • Pereira, P. J. B. et al., Trypanosoma cruzi macrophage infectivity potentiator has a rotamase core and a highly exposed alpha-helix. EMBO Rep., 2002, 3, 88–94.
  • Falloon, K., Juvvadi, P. R., Richards, A. D. and Vargas-mu, J. M., Characterization of the FKBP12-encoding genes in Aspergillus fumigatus. PLOS ONE, 2015, 10, e0137869.
  • Li, Y. et al., Characterization of three FK506-binding proteins in the entomopathogenic fungus Beauveria bassiana. J. Invertebr. Pathol., 2020, 171, 107334.
  • Cruz, M. C. et al., Rapamycin antifungal action is mediated via conserved complexes with FKBP12 and TOR kinase homologs in Cryptococcus neoformans. Mol. Cell. Biol., 1999, 19, 4101–4112.
  • Juvvadi, P. R. et al., Harnessing calcineurin–FK506–FKBP12 crystal structures from invasive fungal pathogens to develop antifungal agents. Nature Commun., 2019, 10, 4275.
  • Obi, I. R. and Francis, M. S., Demarcating SurA activities required for outer membrane targeting of Yersinia pseudotuberculosis adhesins. Infect. Immunol., 2013, 81, 2296–2308.
  • Fardini, Y., Trotereau, J., Bottreau, E., Souchard, C., Velge, P. and Virlogeux-payant, I., Investigation of the role of the BAM complex and SurA chaperone in outer-membrane protein biogenesis and type III secretion system expression in Salmonella Microbiology, 2009, 155, 1613–1622.
  • Klein, K. et al., Deprivation of the periplasmic chaperone SurA reduces virulence and restores antibiotic susceptibility of multidrug-resistant Pseudomonas aeruginosa. Front. Microbiol., 2019, 10, 100.
  • Bitto, E. and McKay, D. B., Crystallographic structure of SurA, a molecular chaperone that facilitates folding of outer membrane porins. Structure, 2002, 10, 1489–1498.
  • Zemansky, J., Kline, B. C., Woodward, J. J. and Leber, J. H., Development of a mariner-based transposon and identification of Listeria monocytogenes determinants, including the peptidyl– prolyl isomerase PrsA2, that contribute to its hemolytic phenotype. J. Bacteriol., 2009, 191, 3950–3964.
  • Alonzo III, F., Port, G. C., Cao, M. and Freitag, N. E., The Posttranslocation chaperone PrsA2 contributes to multiple facets of Listeria monocytogenes pathogenesis. Infect. Immunol., 2009, 77, 2612–2623.
  • Cahoon, L. A., Freitag, N. E. and Prehna, G., A structural comparison of Listeria monocytogenes protein chaperones PrsA1 and PrsA2 reveals molecular features required for virulence. Mol. Microbiol., 2016, 101, 42–61.
  • Goh, J. Y., Lai, C. Y., Tan, L. C., Yang, D., He, C. Y. and Liou, Y. C., Functional characterization of two novel parvulins in Trypanosoma brucei. FEBS Lett., 2010, 584, 2901–2908.
  • Rehic, E. et al., Structural analysis of the 42 kDa parvulin of trypanosoma brucei. Biomolecules, 2019, 9, biom9030093.
  • Brydges, S. D. et al., Molecular characterization of TgMIC5, a proteolytically processed antigen secreted from the micronemes of Toxoplasma gondii. Mol. Biochem. Parasitol., 2000, 111, 51–66.
  • Saouros, S., Dou, Z., Henry, M., Marchant, J., Carruthers, V. B. and Matthews, S., Microneme protein 5 regulates the activity of Toxoplasma subtilisin 1 by mimicking a subtilisin prodomain. J. Biol. Chem., 2012, 287, 36029–36040.
  • Marsolier, J. et al., Theileria parasites secrete a prolyl isomerase to maintain host leukocyte transformation. Nature, 2015, 520, 378–382.
  • Li, Z. et al., The structure of the Candida albicans Ess1 prolyl isomerase reveals a well-ordered linker that restricts domain mobility. Biochemistry, 2005, 44, 6180–6189.
  • Ren, P., Rossettini, A., Chaturvedi, V. and Hanes, S. D., The Ess1 prolyl isomerase is dispensable for growth but required for virulence in Cryptococcus neoformans. Microbiology, 2005, 151, 1593–1605.
  • Trémillon, N. et al., PpiA, a surface PPIase of the cyclophilin family in Lactococcus lactis. PLOS ONE, 2012, 7, e33516.
  • Thomloudi, E., Skagia, A., Venieraki, A., Katinakis, P. and Dimou, M., Functional analysis of the two cyclophilin isoforms of Sinorhizobium meliloti. World J. Microbiol. Biotechnol., 2017, 33, 28.
  • Bhaduri, A. et al., Mycobacterium tuberculosis cyclophilin A uses novel signal sequence for secretion and mimics eukaryotic cyclophilins for interaction with host protein repertoire. PLOS ONE, 2014, 9, e88090.
  • Pandey, S., Sharma, A., Tripathi, D. and Kumar, A., Mycobacterium tuberculosis peptidyl–prolyl isomerases also exhibit chaperone like activity in vitro and in vivo. PLOS ONE, 2016, 11, e0150288.
  • Mukouhara, T., Arimoto, T., Cho, K., Yamamoto, M. and Igarashi, T., Surface lipoprotein PpiA of Streptococcus mutans suppresses scavenger receptor MARCO-dependent phagocytosis by macrophages. Infect. Immunol., 2011, 79, 4933–4940.
  • Reffuveille, F. et al., Involvement of peptidylprolyl cis/trans isomerases in Enterococcus faecalis virulence. Infect. Immunol., 2017, 80, 1728–1735.
  • Clubb, R. T., Ferguson, S. B., Walsh, C. T. and Wagner, G., Three-dimensional solution structure of Escherichia coli periplasmic cyclophilin. Biochemistry, 1994, 33, 2761–2772.
  • Henriksson, L. M., Johansson, P., Unge, T. and Mowbray, S. L., X-ray structure of peptidyl-prolyl cis-trans isomerase A from Mycobacterium tuberculosis. Eur. J. Biochem., 2004, 271, 4107– 4113.
  • Christoforides, E., Dimou, M., Katinakis, P., Bethanis, K. and Karpusas, M., Structure of a bacterial cytoplasmic cyclophilin A in complex with a tetrapeptide. Acta Crystallogr. Sect. F, 2012, 68, 259–264.
  • Gourlay, L. et al., The three-dimensional structure of two redox states of Cyclophilin A from Schistosoma mansoni. J. Biol. Chem., 2007, 282, 24851–24857.
  • Konno, M., Ito, M., Hayano, T. and Takahashi, N., The substratebinding site in Escherichia coli cyclophilin A preferably recognizes a cis-proline isomer or a highly distorted form of the trans isomer. J. Mol. Biol., 1996, 256, 897–908.
  • Konno, M. et al., Escherichia coli cyclophilin B binds a highly distorted form of trans-prolyl peptide isomer. Eur. J. Biochem., 2004, 271, 3794–3803.
  • Floudas, A. et al., Composition of the Schistosoma mansoni worm secretome: identification of immune modulatory cyclophilin A. PLOS Negl. Trop. Dis., 2017, 11, e0006012.
  • Teixeira, T. et al., The Schistosoma mansoni cyclophilin A epitope 107–121 induces a protective immune response against schistosomiasis. Mol. Immunol., 2019, 111, 172–181.
  • Li, J. et al., Cyclophilin A from Schistosoma japonicum promotes a Th2 response in mice. Parasites Vectors, 2013, 6, 230.
  • Santos-Gomes, G. M., Rodrigues, A., Teixeira, F. and Carreira, J., Immunization with the Leishmania infantum recombinant cyclophilin protein 1 confers partial protection to subsequent parasite infection and generates specific memory T cells. Vaccine, 2014, 32, 1247–1253.
  • Ortona, E. et al., Immunological characterization of Echinococcus granulosus cyclophilin, an allergen reactive with IgE and IgG4 from patients with cystic echinococcosis. Clin. Exp. Immunol., 2002, 128, 124–130.
  • Tuo, W., Fetterer, R., Jenkins, M. and Dubey, J. P., Identification and characterization of Neospora caninum cyclophilin that elicits gamma interferon production. Infect. Immunol., 2005, 73, 5093–5100.
  • Ibrahim, H. M., Bannai, H., Xuan, X. and Nishikawa, Y., Toxoplasma gondii cyclophilin 18-mediated production of nitric oxide induces bradyzoite conversion in a CCR5-dependent manner. Infect. Immunol., 2009, 77, 3686–3695.
  • Ibrahim, H. M., Xuan, X. and Nishikawa, Y., Toxoplasma gondii cyclophilin 18 regulates the proliferation and migration of murine macrophages and spleen cells. Clin. Vaccine Immunol., 2010, 17, 1322–1329.
  • Ibrahim, H. M., Nishimura, M., Tanaka, S., Awadin, W., Furuoka, H. and Xuan, X., Overproduction of Toxoplasma gondii cyclophilin-18 regulates host cell migration and enhances parasite dissemination in a CCR5-independent manner. BMC Microbiol., 2014, 14, 76.
  • Wang, P., Cardenas, M. E., Cox, G. M., Perfect, J. R. and Heitman, J., Two cyclophilin A homologs with shared and distinct functions important for growth and virulence of Cryptococcus neoformans. EMBO Rep., 2001, 2, 511–518.
  • Buldain, I. et al., Cyclophilin and enolase are the most prevalent conidial antigens of Lomentospora prolificans recognized by healthy human salivary IgA and cross-react with Aspergillus fumigatus. Proteom-Clin. Appl., 2016, 10, 1058–1067.
  • Dawar, F. U., Tu, J., Khattak, M. N. K., Mei, J. and Lin, L., Cyclophilin a: a key factor in virus replication and potential target for anti-viral therapy. Curr. Issues Mol. Biol., 2017, 21, 1–20.
  • Gamble, T. R. et al., Crystal structure of human cyclophilin A bound to the amino-terminal domain of HIV-1 capsid. Cell, 1996, 87, 1285–1294.
  • Zhou, D., Mei, Q., Li, J. and He, H., Cyclophilin A and viral infections. Biochem. Biophys. Res. Commun., 2012, 424, 647–650.
  • Striker, R. and Mehle, A., Inhibitors of peptidyl proline isomerases as antivirals in hepatitis C and other viruses. PLoS Pathog., 2014, 10, e1004428.
  • Saeed, U. et al., Parvulin 14 and parvulin 17 bind to HBx and cccDNA and upregulate hepatitis B virus replication from cccDNA to virion in an HBx-dependent manner. J. Virol., 2019, 93, e01840-18.
  • Ylinen, L. M. J. et al., Conformational adaptation of Asian macaque TRIMCyp directs lineage specific antiviral activity. PLOS Pathog., 2010, 6, e1001062.
  • Liu, C. et al., Cyclophilin A stabilizes the HIV-1 capsid through a novel non-canonical binding site. Nature Commun., 2016, 7, 10714.
  • Ngure, M. et al., Interactions of the disordered domain II of hepatitis C virus NS5A with cyclophilin A, NS5B, and viral RNA show extensive overlap. ACS Infect. Dis., 2016, 2, 839–851.
  • Molyvdas, A. and Matalon, S., Cyclosporine: an old weapon in the fight against coronaviruses. Eur. Respir. J., 2020, 56, 1–5.
  • Poulsen, N. N., von Brunn, A., Hornum, M. and Blomberg Jensen, M., Cyclosporine and COVID-19: risk or favorable? Am. J. Transplant., 2020, 20, 2975–2982.
  • Liu, C., von Brunn, A. and Zhu, D., Cyclophilin A and CD147: novel therapeutic targets for the treatment of COVID-19. Med. Drug Discov., 2020, 7, 100056.
  • Pfefferle, S. et al., The SARS–coronavirus–host interactome: identification of cyclophilins as target for pan-coronavirus inhibitors. PLOS Pathog., 2011, 7, e1002331.
  • Von Brunn, A., Ciesek, S., Von Brunn, B. and Carbajo-Lozoya, J., Genetic deficiency and polymorphisms of cyclophilin A reveal its essential role for human coronavirus 229E replication. Curr. Opin. Virol., 2015, 14, 56–61.
  • Softic, L. et al., Inhibition of SARS-CoV-2 infection by the cyclophilin inhibitor alisporivir (Debio 025). Antimicrob. Agent Chemother., 2020, 64, e00876-20.
  • Pawlotsky, J.-M., COVID-19 pandemic: time to revive the cyclophilin inhibitor alisporivir. Clin. Infect. Dis., 2020, ciaa587.
  • Ke, H. et al., Crystal structures of cyclophilin A complexed with cyclosporin A and N-methyl-4-[(E)-2-butenyl]-4,4-dimethylthreonine cyclosporin A. Structure, 1994, 2, 33–44.
  • Dujardin, M., Bouckaert, J., Rucktooa, P. and Hanoulle, X., X-ray structure of alisporivir in complex with cyclophilin A at 1.5 Å resolution. Acta Crystallogr., Sect. F, 2018, 74, 583–592.
  • Rosenwirth, B. et al., Inhibition of human immunodeficiency virus type 1 replication by SDZ NIM 811, a nonimmunosuppressive cyclosporine analog. Antimicrob. Agents Chemother., 1994, 38, 1763–1772.
  • Ikura, T. and Ito, N., Requirements for peptidyl-prolyl isomerization activity: a comprehensive mutational analysis of the substrate-binding cavity of FK506-binding protein 12. Protein Sci., 2007, 16, 2618–2625.

Abstract Views: 341

PDF Views: 136




  • Role of peptidyl-prolyl cis–trans isomerases in infectious diseases and host–pathogen interactions

Abstract Views: 341  |  PDF Views: 136

Authors

Gargi Biswas
Crystallography and Molecular Biology Division, Saha Institute of Nuclear Physics, 1/AF-Bidhannagar, Kolkata 700 064, India; Homi Bhabha National Institute, Anushaktinagar, Mumbai 400 094, India
Rahul Banerjee
Crystallography and Molecular Biology Division, Saha Institute of Nuclear Physics, 1/AF-Bidhannagar, Kolkata 700 064, India; Homi Bhabha National Institute, Anushaktinagar, Mumbai 400 094, India

Abstract


Peptidyl-prolyl cis–trans isomerases (PPIases) catalyse the cis–trans isomerization of Ca atoms about the peptide bond preceding a proline residue, thereby regulating a conformational switch which controls a plethora of cellular processes. PPIases play a key role in the survival, reproduction, proliferation and virulence of microbial pathogens vis-à-vis their human host. In addition, human PPIases either aid or retard viral replication and modulate host immune response. The article discusses the structure–function relationships of PPIases in the context of microbial virulence (with an emphasis on viruses), and on targeting PPIases for COVID-19, responsible for untold human sufferings.

Keywords


Host immune response, infectious diseases, pathogenicity, virulence, peptidyl-prolyl cis–trans isomerase

References





DOI: https://doi.org/10.18520/cs%2Fv121%2Fi6%2F758-768