Open Access
Subscription Access
Development of Cloud-Based Rainfall–Run-Off Model Using Google Earth Engine
The capability of open-data sources in cloud computing was explored in rainfall–run-off modelling through the Soil Conservation Services curve number (SCS CN) model. The Google Earth Engine (GEE) has a petabytes catalogue of global remote sensing and GIS datasets, numerous functions and algorithms to manipulate and visualize datasets rapidly. In this study, an algorithm has been developed to prepare dynamic CN maps in GEE using OpenLandMap Soil Texture and MODIS land use/land cover (LULC) data through ternary function and climate hazards group infrared precipitation rainfall collection for input rainfall and creation of antecedent moisture condition. The capabilities of the developed algorithm were demonstrated for Shipra, Kuttiyadi and Bah river catchments in India. However, it can be used with different satellite data for estimating the run-off and impact of LULC change on run-off for any part of the world and any desired period. The developed algorithm not only utilizes GEF and the public archive database for estimating the run-off at basin/subbasin scales for the planning of water resources, but also provides a quick evaluation of the impact of LULC change on run-off over time
Keywords
Cloud Computing Platform, Curve Number, River Basin, Rainfall–Run-Off Modelling, Water Resources.
User
Font Size
Information
- Sherman, L. K., The unit hydrograph method. Physics of the Earth, 1949, 514–525.
- Mockus, V., Estimation of Total Surface Runoff for Individual Storms, Exhibit A of Appendix B, Interim Survey Report Grand (Neosho) River Watershed, USDA, 1 December 1949.
- Musgrave, G. W., How Much of the Rain Enters the Soil? Yearbook of Agriculture 1955: Water, USDA, Washington, DC, USA, 1955.
- Woodward, D. E., Hawkins, R. H. and Quan, Q. D., Curve number method: origins, applications and limitations. In Hydrologic Modeling for the 21st Century: 2nd Federal Interagency Hydrologic Modeling Conference, Las Vegas, NV, USA, 2002.
- Fu, S., Zhang, G. Wang, N. and Luo, L., Initial abstraction ratio in the SCS-CN method in the Loess Plateau of China. Trans. ASABE, 2011, 54, 163–169.
- Verma, S., Verma, R. K., Mishra, S. K., Singh, A. and Jayaraj, G. K., A revisit of NRCS-CN inspired models coupled with RS and GIS for run-off estimation. Hydrol. Sci. J., 2017, 62, 1891–1930.
- Arnold, J. G. and Allen, P. M., Estimating hydrologic budgets for three Illinois watersheds. J. Hydrol., 1996, 176, 57–77.
- Anderson, M. L., Chen, Z.-Q., Kavvas, M. L. and Feldman, A., Coupling HEC-HMS with atmospheric models for prediction of watershed run-off. J. Hydrol. Eng., 2002, 7, 312–318.
- Romero, P., Castro, G., Gómez, J. A. and Fereres, E., Curve number values for olive orchards under different soil management. Soil Sci. Soc. Am. J., 2007, 71, 1758–1769.
- Soulis, K. X. and Valiantzas, J. D., Identification of the SCS-CN parameter spatial distribution using rainfall-run-off data in heterogeneous watersheds. Water Resour. Manage., 2013, 27, 1737–1749.
- Garg, V., Nikam, B. R., Thakur, P. K., Aggarwal, S. P., Gupta, P. K. and Srivastav, S. K., Human-induced land use land cover change and its impact on hydrology. HydroResearch, 2019, 1, 48– 56.
- Schultz, G. A., Remote sensing in hydrology. J. Hydrol., 1988, 100, 239–265.
- Ranade, R., Garg, A., Jain, S. and Pandey, K., Satellite Image Enhancement Toolbox (SIET) – an open source image enhancement implementation. In Open Source Geospatial Tools in Climate Change Research and Natural Resources Management (ed. OSGEO-India), 2015, pp. 8–13.
- Dixit, A., Thakur, P. K., Aggarwal, S. P. and Jain, S., Open source geospatial tools for hydrological modeling. In OSGEO – India: FOSS4G 2015 – Second National Conference ‘Open Source Geospatial Tools in Climate Change Research and Natural Resources Management’, Roorkee, 8–10 June 2015, pp. 1–5.
- Chi, M., Plaza, A., Benediktsson, J. A., Sun, Z., Shen, J. and Zhu, Y., Big data for remote sensing: challenges and opportunities. Proc. IEEE, 2016, 104, 2207–2219.
- Ma, Y. et al., Remote sensing big data computing: challenges and opportunities. Future Gener. Comput. Syst., 2015, 51, 47–60.
- Gorelick, N., Hancher, M., Dixon, M., Ilyushchenko, S., Thau, D. and Moore, R., Google Earth Engine: planetary-scale geospatial 27.
- Hansen, M. C. et al., High-resolution global maps of 21st century forest cover change. Science, 2013, 342, 850–853.
- Nguyen, U. N. T., Pham, L. T. H. and Dang, T. D., An automatic water detection approach using Landsat 8 OLI and Google Earth Engine cloud computing to map lakes and reservoirs in New Zealand. Environ. Monit. Assess., 2019, 191, 235.
- Murphy, S., Wright, R. and Rouwet, D., Color and temperature of the crater lakes at Kelimutu volcano through time. Bull. Volcanol., 2018, 80, 2.
- Vos, K., Harley, M. D., Splinter, K. D., Simmons, J. A. and Turner, I. L., Sub-annual to multi-decadal shoreline variability from publicly available satellite imagery. Coast. Eng., 2019, 150, 160–174.
- Snapir, B., Momblanch, A., Jain, S. K., Waine, T. W. and Holman, I. P., A method for monthly mapping of wet and dry snow using Sentinel-1 and MODIS: application to a Himalayan river basin. Int. J. Appl. Earth Obs. Geoinf., 2019, 74, 222–230.
- Chatterjee, C., Jha, R., Lohani, A. K., Kumar, R. and Singh, R., Runoff curve number estimation for a basin using remote sensing and GIS. Asian-Pac. Remote Sensing GIS J., 2001, 14, 1–7.
- Friedl, M. and Sulla-Menashe, D., MCD12Q1 MODIS/Terra+ aqua land cover type yearly L3 global 500 m SIN grid V006 (data set). NASA EOSDIS L. Process. DAAC, 2015, 10; https://doi.org/10.5067/MODIS/MCD12Q1.006.
- Funk, C. et al., The climate hazards infrared precipitation with stations – a new environmental record for monitoring extremes. Sci. Data, 2015, 2, 150066.
- Hengl, T., Soil texture classes (USDA system) for 6 soil depths (0, 10, 30, 60, 100 and 200 cm) at 250 m, 2018; 10.5281/zenode. 1475451.
- Amutha, R. and Porchelvan, P., Estimation of surface run-off in Malattar sub-watershed using SCS-CN method. J. Indian Soc. Remote Sensing, 2009, 37, 291–304.
- Mishra, S. K. and Singh, V. P., A relook at NEH-4 curve number data and antecedent moisture condition criteria. Hydrol. Process., 2006, 20, 2755–2768.
- Hjelmfelt, Jr A. T., Kramer, K. A. and Burwell, R. E., Curve numbers as random variables. Rainfall-Runoff Relationships, Water Resources Publication, Littleton, CO, USA, 1982, pp. 365–370.
- Goldblatt, R., You, W., Hanson, G. and Khandelwal, A. K., Detecting the boundaries of urban areas in India: a dataset for pixelbased image classification in Google Earth Engine. Remote Sensing, 2016, 8.
- Campos-Taberner, M. et al., Global estimation of biophysical variables from Google Earth Engine platform. Remote Sensing, 2018, 10, 1167.
- Aguilar, R., Zurita-Milla, R., Izquierdo-Verdiguier, E. and Rolf A. de By, A cloud-based multi-temporal ensemble classifier to map smallholder farming systems. Remote Sensing, 2018, 10, 729.
Abstract Views: 312
PDF Views: 128