Open Access Open Access  Restricted Access Subscription Access

Metabolic profiling and biological activity of Pseudocercospora hakeae on Curculigo orchioides Gaertn.


Affiliations
1 PG & Research Department of Botany, Sree Neelakanta Government Sanskrit College, Pattambi, Palakkad 679 306, India
 

Plants have an endophytic association with a diverse group of fungi that help them accumulate compounds of therapeutic importance. In this study, we highlight the significant role of a genetically identified endophyte, Pseudocercospora hakeae from Curculigo orchioides in providing potent medicinal property to the host plant assessed through its metabolic profiling, various antioxidant activities as well as enzyme production. HPTLC profile of ethyl acetate extract, and quantification of total phenolic and total flavonoid contents proved significant production of secondary metabolites

Keywords

Antioxidants, Curculigo orchioides, enzyme production, metabolic profiling, Pseudocercospora hakeae.
User
Notifications
Font Size

  • Stierle, A., Strobel, G. and Stierle, D., Taxol, and taxane production by Taxomyces andreanae an endophytic fungus of Pacific yew. Science, 1993, 260, 214–216.
  • Nie, Y. et al., Medicinal plants of genus Curculigo: traditional uses and a phytochemical and ethnopharmacological review. J. Ethnopharmacol., 2013, 147, 547‒563.
  • Brintha, S., Rajesh, S., Renuka, R., Santhanakrishnan, V. P. and Gnanam, R., Phytochemical analysis and bioactivity prediction of compounds in methanolic extracts of Curculigo orchioides Gaertn. J. Pharmacogn. Phytochem., 2017, 6, 192–197.
  • Kumar, S., Singh, J., Shah, N. C. and Ranjan, V., Indian Medicinal and Aromatic Plants Facing Genetic Erosion, Central Institute of Medicinal and Aromatic Plants, Lucknow, 1997, pp. 89–91.
  • Joy, P. P., Savithri, K. A., Samuel, M. and Baby, P. S., Growth yield and quality of two biotypes of black musli (Curculigo orchioides). J. Med. Aromat. Plants, 2004, 26, 684–692.
  • Milind, N. G., Ramjan, M. M. and Shrirang, S. B., Isolation and diversity of fungal endophyte from tuberous rhizome C. orchioides Gaertn. Int. J. Appl. Res., 2017, 3, 612–616.
  • White, T. J., Brunus, T. D., Lee, S. B. and Taylor, J. W., Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In PCR Protocols: A Guide to Methods and Applications (eds Innis, M. A. et al.), Academic Press, New York, USA, 1990, pp. 315–322.
  • Kalyanasundaram, I., Nagamuthu, J. and Muthukumaraswamy, S., Antimicrobial activity of endophytic fungi isolated and identified from salt marsh plant in Vellar Estuary. J. Microbiol. Antimicrob., 2015, 7, 13–20.
  • Raviraja, N. S., Maria, G. L. and Sridhar, K. R., Antimicrobial evaluation of endophytic fungi inhabiting medicinal plants of the western ghats of India. Eng. Life Sci., 2006, 6, 515–520.
  • Harborne, J. B., Phytochemical Methods: A Guide to Modern Techniques of Plant Analysis, Chapman and Hall Ltd, London, 1998, 5th edn, pp. 1–72.
  • Kokote, C. K., Purohit, A. P. and Gokhale, S. B., Practical Pharmacognosy, Jain, M. K. for Vallabh Prakashan, Pitampura, New Delhi, 2005, p. 107.
  • Damodar, K., Bhogineni, S. and Ramanjaneyulu, B., Phytochemical screening, quantitative estimation of total phenolic, flavonoids and antimicrobial evaluation of Trachyspermum ammi. J. Atoms. Mol., 2011, 1, 1–8.
  • Prieto, P., Pineda, M. and Aguilar, M., Spectrophotometric quantitation of antioxidant capacity through the formation of a phosphomolybdenum complex: specific application to the determination of vitamin E. Anal. Biochem., 1999, 269, 337–341.
  • Oyaizu, M., Studies on products of browning reaction: antioxidative activities of browning reaction prepared from glucosamine. Jpn. J. Nutr., 1986, 44, 307‒315.
  • Babu, D. R. and Rao, G. N., Antioxidant properties and electrochemical behavior of cultivated commercial Indian edible mushrooms. J. Food Sci. Technol., 2013, 50, 301‒308.
  • Devi, N. N., Prabakaran, J. J. and Wahab, F., Phytochemical analysis and enzyme analysis of endophytic fungi from Centella asiatica. Asian Pac. J. Trop. Biomed., 2012, 2, 280‒284
  • Sunitha, V. H., Ramesh, A., Savitha, J. and Srinivas, C., Amylase production by endophytic fungi Cylindrocephalum sp. isolated from medicinal plant Alpinia calcarata (Haw.) Roscoe. Braz. J. Microbiol., 2012, 43, 1213‒1221.
  • Mawoza, T. and Ndove, T., Combretum erythrophyllum (Burch.) Sond. (Combretaceae): a review of its ethnomedicinal uses, phytochemistry, and pharmacology. Global. J. Biol. Agric. Health Sci., 2015, 4, 105–109.
  • Correa, R. C. G., Rhoden, S. A., Mota, T. R., Azevedo, J. L. and Pamphile, J. A., Endophytic fungi: expanding the arsenal of industrial enzyme producers. J. Ind. Microbiol. Biotechnol., 2014, 41, 1467‒1478.
  • Ling, Y. Z., Liang, Z., Xiao, H. T., Wen, F. L., Xing, L., Gang, Z. and Jiang, L. Z., Community of endophytic fungi from the medicinal and edible plant Fagopyrum tataricum and their antimicrobial activity. Trop. J. Pharm. Res., 2017, 16, 387‒396.
  • Prihantini, A. I. and Tachibana, S., Antioxidant compounds produced by Pseudocercospora sp. ESL 02 is an endophytic fungus isolated from Elaeocarpus sylvestris. Asia Pac. J. Trop. Biomed., 2017, 7, 110–115.
  • Crous, P. W. et al., Phylogenetic lineages in Pseudocercospora. Stud. Mycol., 1999, 75, 37‒114.
  • Scholz, E. and Rimpler, H., Proanthocyanidins from Krameria triandra ischolar_main. Plant. Med., 1989, 55, 379–384.
  • Gehlot, M. and Kasera, P. K., Conservation and ecophysiological studies of Tribulus rajasthanensis – a critically endangered medicinal plant from the Indian Thar desert. Int. J. Biodivers. Environ., 2011, 1, 137‒141.
  • Akiyama, H., Fujii, K., Yamasaki, O., Oono, T. and Iwatsuki, K., Antibacterial action of several tannins against Staphylococcus aureus. J. Antimicrob. Chemother., 2001, 48, 487‒491.
  • Sanches, N. R., Cortez, D. A. G., Sachiavini, M. S., Nakamura, C. V. and Filho, B. P. D., An evaluation of antibacterial activities of Psidium guajava (L.). Braz. Arch. Biol. Technol., 2005, 48, 429–436.
  • Tsuchiya, H. et al., Comparative study on the antibacterial activity of phytochemical flavanones against methicillin-resistant Staphylococcus aureus. J. Ethnopharmacol., 1996, 50, 27‒34.
  • Cowan, M. M., Plant products as antimicrobial agents. Clin. Microbiol. Rev., 1999, 12, 564–584.
  • Susindran, P. and Ramesh, N., Phytochemical screening and antimicrobial activity of Curculigo orchioides Gaertn rhizome, and endangered medicinal herb. Int. J. Curr. Res., 2014, 6, 9104–9107.
  • Yan, M. H. et al., Periglaucines A−D, anti-HBV and -HIV-1 alkaloids from Pericampylus glaucus. J. Nat. Prod., 2008, 71, 760–763.
  • Ramachandani, D., Ganeshpurkar, A., Bansal, D., Karchuli, M. S. and Dubey, N., Protective effect of Curculigo orchioides extract on cyclophosphamide-induced neurotoxicity in the murine model. Toxicol. Int., 2014, 21, 232–235.
  • Danagoudar, A., Joshi, C. G., Ravi, S. K., Rohit, K. H. G. and Ramesh, B. N., Antioxidant and cytotoxic potential of endophytic fungi isolated from medicinal plant Tragia involucrate L. Pharmacogn. Res., 2018, 10, 188–194.
  • Srinivasan, K., Jagadish, L. K., Shenbhagaraman, R. and Muthumary, J., Antioxidant activity of endophytic fungus Phyllosticta sp. isolated from Guazuma tomentosa. J. Phytol., 2010, 2, 37‒41.
  • Brand-Williams, W., Cuvelier, M. E. and Berset, C., Use of a free radical method to evaluate antioxidant activity. Food Sci. Technol., 1995, 30, 609‒615.
  • Ravindran, C., Naveenan, T., Varatharajan, G. R., Rajasabapathy, R. and Meena, R. M., Antioxidants in mangrove plants and endophytic fungal associations. Bot. Mar., 2012, 55, 269–279.
  • Sharma, R. and Kumar, B. S., Isolation characterization and antioxidant potential of endophytic fungi of Ocimum sanctum Linn. (Lamiaceae). Ind. J. Appl. Res., 2013, 3, 5–10.
  • Khalil Doaa, M. A., El-Zayat Soad, A. and El Sayed Magdi, A., Phytochemical screening and antioxidant potential of endophytic fungi isolated from Hibiscus sabdariffa. J. Appl. Biotechnol. Rep., 2020, 7, 116‒124.
  • Choudhary, D. R., Chattopadhyay, S. K. and Roy, S., Assessment of secondary metabolites with relation to their antioxidant activity of fungal endophytes isolated from medicinal plants. Int. J. Pharm. Pharm. Sci., 2018, 10, 59–63.
  • Wu, B., Wu, L., Chen, D., Yang, Z. and Luo, M., Purification, and characterization of a novel fibrinolytic protease from Fusarium sp. CPCC 480097. J. Ind. Microbiol. Biotechnol., 2009, 36,451‒459.
  • Correa, R. C. G., Rhoden, S. A., Mota, T. R., Azevedo, J. L. and Pamphile, J. A., Endophytic fungi: expanding the arsenal of industrial enzyme producers. J. Ind. Microbiol. Biotechnol., 2014, 41,
  • ‒1478.

Abstract Views: 201

PDF Views: 102




  • Metabolic profiling and biological activity of Pseudocercospora hakeae on Curculigo orchioides Gaertn.

Abstract Views: 201  |  PDF Views: 102

Authors

Poozhithodikovilingal Subrahmanian Anila
PG & Research Department of Botany, Sree Neelakanta Government Sanskrit College, Pattambi, Palakkad 679 306, India
Padmanabhan Jayanthikumari Vivek
PG & Research Department of Botany, Sree Neelakanta Government Sanskrit College, Pattambi, Palakkad 679 306, India
Parakkulathil Ramachandran Swetha
PG & Research Department of Botany, Sree Neelakanta Government Sanskrit College, Pattambi, Palakkad 679 306, India
Thazhe Kollora Athulya
PG & Research Department of Botany, Sree Neelakanta Government Sanskrit College, Pattambi, Palakkad 679 306, India
Mohankumar Saraladevi Resmi
PG & Research Department of Botany, Sree Neelakanta Government Sanskrit College, Pattambi, Palakkad 679 306, India

Abstract


Plants have an endophytic association with a diverse group of fungi that help them accumulate compounds of therapeutic importance. In this study, we highlight the significant role of a genetically identified endophyte, Pseudocercospora hakeae from Curculigo orchioides in providing potent medicinal property to the host plant assessed through its metabolic profiling, various antioxidant activities as well as enzyme production. HPTLC profile of ethyl acetate extract, and quantification of total phenolic and total flavonoid contents proved significant production of secondary metabolites

Keywords


Antioxidants, Curculigo orchioides, enzyme production, metabolic profiling, Pseudocercospora hakeae.

References





DOI: https://doi.org/10.18520/cs%2Fv122%2Fi3%2F290-297