Open Access Open Access  Restricted Access Subscription Access

Who cultivates traditional paddy varieties and why? Findings from Kerala, India


Affiliations
1 Division of Agricultural Economics, ICAR-Indian Agricultural Research Institute, Pusa, New Delhi 110 012, India
2 Centre for Environment Science and Climate Resilient Agriculture, ICAR-Indian Agricultural Research Institute, Pusa, New Delhi 110 012, India
 

Traditional paddy varieties are climate resilient, local stress-tolerant, low-input intensive and valuable sources of genetic diversity that have been under the threat of extinction from rising preferences for high yielding varieties. However, farmers in few pockets of the globe continue to cultivate traditional paddy varieties. This study therefore is an attempt at investigating who cultivates them and why they do so, through the survey of 225 paddy farmers in Wayanad district of Kerala. Results revealed that traditional paddy varieties were grown mainly by marginal and tribal farmers for chief purposes of self-consumption, and for associated traditional values and conservation. Farmers’ varietal selection decisions were found to be influenced by varietal traits related to consumption aspects, consumer demand, pest and disease resistance. Therefore, by cultivating traditional paddy varieties, farmers have been conserving these valuable genetic resources on-farm. However, stronger concerted institutional interventions are required for full-fledged, systematic and sustained in situ conservation of agricultural biodiversity

Keywords

Agrobiodiversity, in-situ conservation, traditional paddy varieties, varietal traits.
User
Notifications
Font Size

  • Das, T. and Das, A. K., Inventory of the traditional rice varieties in farming system of southern Assam: a case study. Indian J. Tradit. Knowl., 2014, 13(1), 157–163.
  • Bisht, V., Rao, K. S., Maikhuri, R. K. and Nautiyal, A. R., Genetic divergence of paddy landraces in Nanakosi micro-watershed of Uttarakhand Himalaya. J. Trop. Agric., 2008, 45(1), 48–50.
  • Kumbhar, S. D., Kulwal, P. L., Patil, J. V., Sarawate, C. D., Gaikwad, A. P. and Jadhav, A. S., Genetic diversity and population structure in landraces and improved rice varieties from India. Rice Sci., 2015, 22(3), 99–107.
  • Rabara, R. C., Ferrer, M. C., Diaz, C. L., Newingham, M., Cristina, V. and Romero, G. O., Phenotypic diversity of farmers’ traditional rice varieties in the Philippines. Agronomy, 2014, 4(2), 217–241.
  • Rasheed, S., Venkatesh, P., Singh, D. R., Renjini, V. R., Jha, G. K. and Sharma, D. K., Ecosystem valuation and eco-compensation for conservation of traditional paddy ecosystems and varieties in Kerala, India. Ecosyst. Serv., 2021, 49, 101272.
  • Deb, D., Bhattacharya, D., Jana, K. K., Mahato, R., Pramanik, R., Ram, A. and Sinha, S., Seeds of Tradition, Seeds of Future: Folk rice Varieties of Eastern India, Research Foundation for Science, Technology, and Ecology, New Delhi, 2005.
  • Thrupp, L. A., Cultivating Diversity: Agrobiodiversity and Food Security, World Resources Institute, Washington, DC, 1998.
  • Love, B. and Spaner, D., Agrobiodiversity: its value, measurement, and conservation in the context of sustainable agriculture. J. Sustain. Agric., 2007, 31(2), 53–82.
  • Ahuja, U., Ahuja, S. C., Thakrar, R. and Singh, R. K., Rice – a nutraceutical. Asian Agrihist., 2008, 2(2), 93–108.
  • Anandan, A., Rajiv, G., Eswaran, R. and Prakash, M., Genotypic variation and relationships between quality traits and trace elements in traditional and improved rice (Oryza sativa L.) genotypes. J. Food Sci., 2011, 76(4), 122–130.
  • Devraj, L., Panoth, A., Kashampur, K., Kumar, A. and Natarajan, V., Study on physicochemical, phytochemical, and antioxidant properties of selected traditional and white rice varieties. J. Food Process. Eng., 2020, 43(3), 1–13.
  • Gopi, G. and Manjula, M., Specialty rice biodiversity of Kerala: need for incentivising conservation in the era of changing climate. Curr. Sci., 2018, 114(5), 997–1006.
  • Deb, D., Folk rice varieties, traditional agricultural knowledge and food security. Multicultural Knowledge and the University, 45–57. Multiversity/Citizens International Malaysia, Penang, 2014.
  • Nelson, A. R. L. E., Ravichandran, K. and Antony, U., The impact of the green revolution on indigenous crops of India. J. Ethnic Foods, 2019, 6(1), 8.
  • Zapico, F. L., Dizon, J. T., Borromeo, T. H., McNally, K. L., Fernando, E. S. and Hernandez, J. E., Genetic erosion in traditional rice agro-ecosystems in Southern Philippines: drivers and consequences. Plant Genet. Resour., 2020, 18(1), 1–10.
  • Narloch, U., Drucker, A. G. and Pascual, U., Payments for agrobiodiversity conservation services for sustained on-farm utilization of plant and animal genetic resources. Ecol. Econ., 2011, 70(11), 1837–1845.
  • Singh, R. K., Singh, U. S. and Khush, G. S., Aromatic Rices, Oxford and IBH Publishing, New Delhi, 2000.
  • Kumar, N. A., Gopi, G. and Prajeesh, P., Genetic erosion and degradation of ecosystem services of wetland rice fields: a case study from Western Ghats, India. In Agriculture, Biodiversity and Markets (eds Lockie, S. and Carpenter, D.), Earthscan, London, 2010, pp. 137–153.
  • Scaria, R., Kumar, S. and Vijayan, P. K., Paddy land conversion as a threat to floristic biodiversity – a study on Karrimpuzha watershed, Kerala state, South India. Int. J. Environ. Sci., 2014, 5(1), 123.
  • Vaughan, D. A. and Chang, T. T., In situ conservation of rice genetic resources. Econ. Bot., 1992, 46(4), 368–383.
  • Bellon, M. R. and van Etten, J., Climate change and on-farm conservation of crop landraces in centres of diversity. In Plant Genetic Resources and Climate Change (eds Jackson, M., Ford-Lloyd, B. and Parry, M. L.), CABI Publishing, Wallingford and New York, 2013, pp. 137–150.
  • Sinha, H., Rediscovering the traditional paddy varieties in Jharkhand: conservation priority in hybrid rice era. J. Rural Dev., 2016, 35(2), 285–307.
  • Stoeckli, S., Birrer, S., Zellweger-Fischer, J., Balmer, O., Jenny, M. and Pfiffner, L., Quantifying the extent to which farmers can influence biodiversity on their farms. Agric. Ecosyst. Environ., 2017, 237, 224–233.
  • Singh, R. K., Dwivedi, B. S. and Tiwari, R., Learning and testing the farmers’ knowledge: conservation of location specific indigenous paddy varieties. Indian J. Tradit. Knowl., 2010, 9(2), 361–365.
  • Government of Kerala, Area and production of crops, 2018–19; ecostat.kerala.gov.in/images/pdf/publications/Agriculture/data/ 2018-19/area-_production_Crop_1819.pdf.
  • Kerala Agricultural University (KAU), Traditional rice varieties of Wayanad (in Malayalam), KAU, Thrissur, 2019.
  • Cheeran, M. T. and Saji, K. S., Problems of farmers in paddy cultivation – a study with special reference to Kerala. Int. J. Soc. Sci. Interdiscip. Res., 2015, 4(9), 124–129.
  • Girigan, G., Anil Kumar, N. and Arivudai Nambi, V., Vayals: a traditional classification of agricultural landscapes. Low Extern. Input Sustain. Agric., 2004, 6(4), 27–28.
  • The Hindu, Growing forty traditional varieties in less than two acres, 2014; thehindu.com/sci-tech/science/growing-forty-traditional-varieties-in-less-than-two-acres/article6442269.ece
  • The Hindu, Tucked away in a tiny village, 154 paddy variants, 2017; thehindu.com/news/national/karnataka/tucked-away-in-a-tinyvillage-154-paddy-variants/article17326431.ece
  • The Guardian, India’s rice warrior battles to build living seed bank as climate chaos looms, 2014; theguardian.com/global-development/2014/mar/18/india-rice-warrior-living-seed-bank
  • The Hindu, Indigenous rice varieties make a comeback, 2018; thehindu.com/life-and-style/food/thanals-save-our-rice-is-revivingindigenous-rice-varieties/article22420554.ece
  • George, S. P., Bastian, D., Radhakrishan, N. V. and Aipe, K. C., Evaluation of aromatic rice varieties in Wayanad, Kerala. J. Trop. Agric., 2006, 43, 67–69.
  • Radhika, A. M., Thomas, D. K. J., Kuruvila, A. and Raju, R. K., Assessing the impact of geographical indications on well-being of rice farmers in Kerala. Int. J. Intellect. Prop. Rights, 2018, 9(2), 1–11.
  • Rahman, S., Sharma, M. P. and Sahai, S., Nutritional and medicinal values of some indigenous rice varieties. Indian J. Tradit. Knowl., 2006, 5(4), 454–458.
  • Pillai, C., Faseela, K. V. and Thampi, H., Nutritional composition of selected traditional rice varieties of Kerala. J. Tropical Agric., 2020, 58(1), 33–43.
  • Bellon, M. R., Conceptualizing interventions to support on-farm genetic resource conservation. World Dev., 2004, 32(1), 159–172.
  • Food and Agriculture Organization (FAO), Paying farmers for environmental services. FAO, Rome, 2007.
  • Krishna, V. V., Drucker, A. G., Pascual, U., Raghu, P. T. and King, E. I. O., Estimating compensation payments for on-farm conservation of agricultural biodiversity in developing countries. Ecol. Econ., 2013, 87, 110–123.
  • Ferraro, P. J. and Kiss, A., Direct payments to conserve biodiversity. Science, 2002, 298(5599), 1718–1719.
  • Ingram, J. C. et al., Evidence of payments for ecosystem services as a mechanism for supporting biodiversity conservation and rural livelihoods. Ecosyst. Serv., 2014, 7, 10–21.
  • Wood, D. and Lenné, J. M., The conservation of agrobiodiversity on-farm: questioning the emerging paradigm. Biodivers. Conserv., 1997, 6(1), 109–129.
  • Bioversity International, On the farm and on the wild side, 2017; bioversityinternational.org/ar2017/2017-highlights/on-the-farm-andon-the-wild-side/.

Abstract Views: 208

PDF Views: 89




  • Who cultivates traditional paddy varieties and why? Findings from Kerala, India

Abstract Views: 208  |  PDF Views: 89

Authors

Shenaz Rasheed
Division of Agricultural Economics, ICAR-Indian Agricultural Research Institute, Pusa, New Delhi 110 012, India
P. Venkatesh
Division of Agricultural Economics, ICAR-Indian Agricultural Research Institute, Pusa, New Delhi 110 012, India
Dharam Raj Singh
Division of Agricultural Economics, ICAR-Indian Agricultural Research Institute, Pusa, New Delhi 110 012, India
V. R. Renjini
Division of Agricultural Economics, ICAR-Indian Agricultural Research Institute, Pusa, New Delhi 110 012, India
Girish Kumar Jha
Division of Agricultural Economics, ICAR-Indian Agricultural Research Institute, Pusa, New Delhi 110 012, India
Dinesh Kumar Sharma
Centre for Environment Science and Climate Resilient Agriculture, ICAR-Indian Agricultural Research Institute, Pusa, New Delhi 110 012, India

Abstract


Traditional paddy varieties are climate resilient, local stress-tolerant, low-input intensive and valuable sources of genetic diversity that have been under the threat of extinction from rising preferences for high yielding varieties. However, farmers in few pockets of the globe continue to cultivate traditional paddy varieties. This study therefore is an attempt at investigating who cultivates them and why they do so, through the survey of 225 paddy farmers in Wayanad district of Kerala. Results revealed that traditional paddy varieties were grown mainly by marginal and tribal farmers for chief purposes of self-consumption, and for associated traditional values and conservation. Farmers’ varietal selection decisions were found to be influenced by varietal traits related to consumption aspects, consumer demand, pest and disease resistance. Therefore, by cultivating traditional paddy varieties, farmers have been conserving these valuable genetic resources on-farm. However, stronger concerted institutional interventions are required for full-fledged, systematic and sustained in situ conservation of agricultural biodiversity

Keywords


Agrobiodiversity, in-situ conservation, traditional paddy varieties, varietal traits.

References





DOI: https://doi.org/10.18520/cs%2Fv121%2Fi9%2F1188-1193