Open Access Open Access  Restricted Access Subscription Access

Gut bacteria mediated insecticide resistance in cotton leafhopper Amrasca biguttula biguttula


Affiliations
1 ICAR-National Bureau of Agricultural Insect Resources, Bengaluru 560 024, India
2 Department of Nanoscience and Technology, Tamil Nadu Agricultural University, Coimbatore 641 003, India
3 Department of Agricultural Microbiology, Tamil Nadu Agricultural University, Coimbatore 641 003, India
4 Department of Agricultural Entomology, Kumaraguru Institute of Agriculture, Erode 638 315, India
 

Cotton leafhopper, Amrasca biguttula biguttula (Ishida) (Hemiptera: Cicadellidae) is a major sucking insect pest of cotton in India. Indiscriminate use of pesticides has led to the development of resistance to most of the recommended pesticide groups. Though there are multiple mechanisms and principles of insecticide resistance development in insects, the gut bacterial-mediated degradation of insecticides is relatively less explored. In the present study, the gut bacteria of field-collected, insecticide-resistant population of A. biguttula biguttula were compared with a laboratory-reared susceptible population. Among the five culturable gut bacteria from the imidacloprid-resistant population, only Enterococcus silesiacus CLHG1a exhibited growth in the agar medium amended with 50 and 100 ppm of imid­acloprid. The imidacloprid degrading capacity of E. silesiacus CLHG1a was further confirmed by HPLC analysis. E. silesiacus and Bacillus amyloliquefaciens CLHG2 showed higher esterolytic activity (0.348 and 0.309 mmoles/min/mg respectively). The esterase zymo­gram on native PAGE revealed a single major band. This study provides clear evidence that the bacterium E. silesiacus isolated from the gut of A. biguttula biguttula has the ability to degrade imidacloprid and may have played a role in the detoxification of pesticides.

Keywords

Cotton, detoxification, esterase activity, gut microflora, insecticide resistance, leafhopper.
User
Notifications
Font Size

  • Anon., All India Coordinated Cotton Improvement Project. Central Institute for Cotton Research, Coimbatore, 2009, pp. 9–15.
  • Mohan, M. and Katiyar, K. N., Impact of different insecticides used for bollworm control on the population of jassid and whitefly in cotton. Pestic. Res. J., 2000, 12, 99–102.
  • Kannan, M., Uthamasamy, S. and Mohan, S., Impact of insecticides on sucking pests and natural enemy complex of transgenic cotton. Curr. Sci., 2004, 86, 726–729.
  • Jeya, P. S. and Regupathy, A., Generating base line data for insecticide resistance monitoring in cotton leafhopper, Amrasca devastans (Distant). Resist. Pest Manage. Newsl., 2002, 11, 4–5.
  • Koga, R. and Moran, N. A., Swapping symbionts in spittlebugs: evolutionary replacement of a reduced genome symbiont. ISME J., 2014, 8, 1237–1246.
  • Kranthi, K. R., Insecticide resistance management in cotton to enhance productivity. Model training course on cultivation of long staple cotton (ELS), Central Institute for Cotton Research, Regional Station, Coimbatore, 2007, pp. 214–231.
  • Kranthi, S., Kranthi, K. R., Rodge, C., Chawla, S. and Nehare, S., Insect resistance to insecticides and Bt cotton in India. In Natural Resource Management: Ecological Perspectives (eds Peshin, R. and Dhawan, A. K.), Springer Nature, Switzerland, 2020, pp. 185– 199.
  • Saeed, R., Muhammad, R., Naeem, A., Muhammad, T. J. and Muhammad, N., Toxicity and resistance of the cotton leafhopper Amrasca devastans (Distant) to neonicotinoid insecticides in Punjab, Pakistan. Crop Prot., 2017, 93, 143–147.
  • Kikuchi, Y., Hosokawa, T. and Fukatsu, T., An ancient but promiscuous host–symbiont association between Burkholderia gut symbionts and their heteropteran hosts. ISME J., 2011, 5, 446–460.
  • Douglas, A. E., The microbial dimension in insect nutritional ecology. Funct. Ecol., 2009, 23, 38–47.
  • Sivakumar, G. et al., Characterization and role of gut bacterium Bacillus pumilus on nutrition and defense of leafhopper Amrasca biguttula biguttula (Ishida) of cotton in India. Indian J. Agric. Sci., 2017, 87, 534–539.
  • Broderick, N. A., Raffa, K. F. and Handelsman, J., Midgut bacteria required for Bacillus thuringiensis insecticidal activity. Proc. Natl. Acad. Sci. USA, 2006, 103(41), 15196–15199.
  • Cariveau, D. P., Powell, J. E., Koch, H., Winfree, R. and Moran, N. A., Variation in gut microbial communities and its association with pathogen infection in wild bumblebees (Bombus). ISME J., 2014, 8, 2369–2379.
  • Jaenike, J., Unckless, R., Cockburn, S. N., Boelio, L. M. and Perlman, S. J., Adaptation via symbiosis: recent spread of a drosophila defensive symbiont. Science, 2010, 329, 212–215.
  • Sharon, G., Segal, D., Ringo, J. M., Hefetz, A., Zilber-Rosenberg, I. and Rosenberg, E., Commensal bacteria play a role in mating preference of Drosophila melanogaster. Proc. Natl. Acad. Sci. USA, 2010, 107, 20051–20056.
  • Montllor, C. B., Maxmen, A. and Purcell, A. H., Facultative bacterial endosymbionts benefit pea aphids Acyrthosiphon pisum under heat stress. Ecol. Entomol., 2002, 27, 189–195.
  • Desai, M. S. and Brune, A., Bacteroidales ectosymbionts of gut flagellates shape the nitrogen-fixing community in dry-wood termites. ISME J., 2012, 6, 1302–1313.
  • Senderovich, Y. and Halpern, M., The protective role of endogenous bacterial communities in chironomid egg masses and larvae. ISME J., 2013, 7, 2147–2158.
  • Ben-Yosef, M., Pasternak, Z., Jurkevitch, E. and Yuval, B., Symbiotic bacteria enable olive fly larvae to overcome host defences. R. Soc. Open Sci., 2015, 2, 150–170.
  • Cejanavarro, J. A. et al., Gut microbiota mediate caffeine detoxification in the primary insect pest of coffee. Nature Commun., 2015, 6, 7618.
  • Kikuchi, Y., Hayatsu, M., Hosokawa, T., Nagayama, A., Tago, K. and Fukatsu, T., Symbiont-mediated insecticide resistance. Proc. Natl. Acad. Sci. USA, 2012, 109, 8618–8622.
  • Sivakumar, G., Rangeshwaran, R., Yandigeri, M. S., Mohan, M., Venkatesan, T. and Vergheses, A., Diversity of culturable gut bacteria associated with the field populations of cotton leafhopper Amrasca biguttula biguttula (Ishida) in India. Indian J. Agric. Sci., 2016, 86, 208–215.
  • Xia, X., Sun, B., Gurr, G. M., Vasseur, L., Xue, M. and You, M., Gut microbiota mediate insecticide resistance in the diamondback moth, Plutella xylostella (L.). Front Microbiol., 2018, 9, 25.
  • Fusetto, R., Shane, D., Trent, P., Richard, A. J., Hair, O. and Philip, B., Partitioning the roles of CYP6G1 and gut microbes in the metabolism of the insecticide imidacloprid in Drosophila melanogaster. Sci. Rep., 2017, 7, 1–12.
  • Ramya, S. L., Venkatesan, T., Srinivasa, M. K., Jalali, S. K. and Abraham, V., Detection of carboxylesterase and esterase activity in culturable gut bacterial flora isolated from diamondback moth,
  • Plutella xylostella (Linnaeus), from India and its possible role in indoxacarb degradation. Braz. J. Microbiol., 2016, 47, 327–336.
  • Indiragandhi, P., Yoon, Ch., Oh Yang, J., Cho, S., Sa, T. M. and Kim, G. H., Microbial communities in the developmental stages of B and Q biotypes of sweet potato whitefly, Bemisia tabaci (Hemiptera: Aleyrodidae). J. Korean Soc. Appl. Biol. Chem., 2010, 53(5), 605–617.
  • Saranya, M., Kennedy, J. S., Jeyarani, S. and Anandham, R., Parasitic potential of Encarsia guadeloupae Viggiani (Hymenoptera: Aphelinidae) on Aleurodicus rugioperculatus Martin (Hemiptera:
  • Aleyrodidae). Phytoparasitica, 2021, p. 141.
  • Heong, K. L., Tan, K. H., Garcia, C. P. F., Liu, Z. and Lu, Z., Research Methods in Toxicology and Insecticide Resistance Monitoring of Rice Planthoppers, International Rice Research Institute, Los Baños, Philippines, 2013, 2nd edn.
  • Feng, W., Wang, X. Q., Zhou, W., Liu, G. Y. and Wan, Y. J., Isolation and characterization of lipase producing bacteria in the intestine of the silkworm, Bombyx mori, reared on different forage. J. Insect Sci., 2011, 11, 135.
  • Harley, J. P. and Prescott, L. M., In Laboratory Exercises in Microbiology, The McGraw-Hill Companies, New York, USA, 2002.
  • Meghji, K., Ward, O. P. and Araujo, A., Production, purification, and properties of extracellular carboxyl esterases from Bacillus subtilis NRRL 365. Appl. Environ. Microbiol., 1990, 56, 3735–3740.
  • Chandrashekharaiah, K. S., Swamy, N. R. and Murthy, K. R., Carboxylesterases from the seeds of an underutilized legume, Mucuna pruriens: isolation, purification and characterization. Phytochemistry, 2011, 72, 2267–2277.
  • Hunter, R. L. and Markert, L., Histochemical demonstration of enzymes separated by zone electrophoresis in starch gels. Science, 1957, 125, 1294–1295.
  • Honnappagouda, K., Bheemanna, M. and Suhas, Y., Current efficacy status of imidacloprid formulations against okra leafhopper, Amrasca biguttula biguttula. Indian J. Plant Prot., 2011, 39, 70–72.
  • Dunbar, H. E., Wilson, A. C., Ferguson, N. R. and Moran, N. A., Aphid thermal tolerance is governed by a point mutation in bacterial symbionts. PLoS Biol., 2007, 5, 1006–1015.
  • Snehaa, C. P., Hemalatha, B. N., Reetha, B., Venkatesan, T. and Jalali, S. K., Molecular characterization of microbes associated with cotton mealy bug, Phenacoccus solenopsi Tinsley. In New Horizons in Insect Science, International Conference on Insect Science, Bengaluru, 2013, pp. 14–17.
  • Caspi-Fluger, A., Inbar, M., Mozes-Daube, N., Mouton, L., Hunter, M. S. and Zchori-Fein, E., Rickettsia ‘in’ and ‘out’: two different localization patterns of a bacterial symbiont in the same insect species. PLoS ONE, 2011, 6(6), 21096.
  • Werren, J. H. and O’Neill, S. L., The evolution of heritable symbionts. In Influential Passengers: Inherited Microorganisms and Arthropod Reproduction, Oxford University Press, Oxford, 1997, pp. 1–41.
  • Shao, Y., Arias-Cordero, E., Guo, H., Bartram, S. and Boland, W., In vivo Pyro-SIP assessing active gut microbiota of the cotton leafworm, Spodoptera littoralis. PLoS ONE, 2014, 9, 85948.
  • Xiang, H. et al., Microbial communities in the larval midgut of laboratory and field populations of cotton bollworm (Helicoverpa armigera). Can. J. Microbiol., 2006, 52, 1085–1092.
  • Lauzon, C. R., Potter, S. and Prokopy, R. J., Degradation and detoxification of the dihydrochalcone phloridzin by Enterobacter agglomerans, a bacterium associated with the apple pest, Rhagoletis pomonella (Walsh) (Diptera: Tephritidae). Environ. Entomol., 2003, 32, 953–963.
  • Pandey, G., Dorrian, S. J., Russell, R. J. and Oakeshott, J. G., Biotransformation of the neonicotinoid insecticides imidacloprid and thiamethoxam by Pseudomonas sp. 1G. Biochem. Biophys. Res. Commun., 2009, 380, 710–714.
  • Yalashetti, S., Yandigeri, M. S., Rudrappa, O., Mohan, M. and Sivakumar, G., Diversity of culturable and unculturable gut bacteria associated with field population of Spodoptera litura (Fab). Bull. Environ. Pharmacol. Life Sci., 2017, 6, 441–451.
  • Cheng, D., Guo, Z., Riegler, M., Xi, Z., Liang, G. and Xu, Y., Gut symbiont enhances insecticide resistance in a significant pest, the oriental fruit fly Bactrocera dorsalis (Hendel). Microbiome, 2017, 5, 13.
  • Anhalt, J. C., Moorman, T. B. and Koskinen, W. C., Biodegradation of imidacloprid by an isolated soil microorganism. J. Environ. Sci. Health, 2007, 42, 509–514.

Abstract Views: 225

PDF Views: 103




  • Gut bacteria mediated insecticide resistance in cotton leafhopper Amrasca biguttula biguttula

Abstract Views: 225  |  PDF Views: 103

Authors

G. Sivakumar
ICAR-National Bureau of Agricultural Insect Resources, Bengaluru 560 024, India
M. Mohan
ICAR-National Bureau of Agricultural Insect Resources, Bengaluru 560 024, India
K. Subaharan
ICAR-National Bureau of Agricultural Insect Resources, Bengaluru 560 024, India
T. Venkatesan
ICAR-National Bureau of Agricultural Insect Resources, Bengaluru 560 024, India
Sanjay Yelshetti
ICAR-National Bureau of Agricultural Insect Resources, Bengaluru 560 024, India
M. Kannan
Department of Nanoscience and Technology, Tamil Nadu Agricultural University, Coimbatore 641 003, India
R. Anandham
Department of Agricultural Microbiology, Tamil Nadu Agricultural University, Coimbatore 641 003, India
M. S. Yandigeri
ICAR-National Bureau of Agricultural Insect Resources, Bengaluru 560 024, India
Surabhi Kumari
ICAR-National Bureau of Agricultural Insect Resources, Bengaluru 560 024, India
K. Elango
Department of Agricultural Entomology, Kumaraguru Institute of Agriculture, Erode 638 315, India
P. Ram Kumar
ICAR-National Bureau of Agricultural Insect Resources, Bengaluru 560 024, India

Abstract


Cotton leafhopper, Amrasca biguttula biguttula (Ishida) (Hemiptera: Cicadellidae) is a major sucking insect pest of cotton in India. Indiscriminate use of pesticides has led to the development of resistance to most of the recommended pesticide groups. Though there are multiple mechanisms and principles of insecticide resistance development in insects, the gut bacterial-mediated degradation of insecticides is relatively less explored. In the present study, the gut bacteria of field-collected, insecticide-resistant population of A. biguttula biguttula were compared with a laboratory-reared susceptible population. Among the five culturable gut bacteria from the imidacloprid-resistant population, only Enterococcus silesiacus CLHG1a exhibited growth in the agar medium amended with 50 and 100 ppm of imid­acloprid. The imidacloprid degrading capacity of E. silesiacus CLHG1a was further confirmed by HPLC analysis. E. silesiacus and Bacillus amyloliquefaciens CLHG2 showed higher esterolytic activity (0.348 and 0.309 mmoles/min/mg respectively). The esterase zymo­gram on native PAGE revealed a single major band. This study provides clear evidence that the bacterium E. silesiacus isolated from the gut of A. biguttula biguttula has the ability to degrade imidacloprid and may have played a role in the detoxification of pesticides.

Keywords


Cotton, detoxification, esterase activity, gut microflora, insecticide resistance, leafhopper.

References





DOI: https://doi.org/10.18520/cs%2Fv122%2Fi8%2F958-964