Open Access
Subscription Access
Isolation of a Pink-pigmented Facultative Methylotrophic Bacteria and its Growth-promoting Effect on Pepper Plants
Microorganisms offer a low-cost, eco-friendly alterna-tive to chemical fertilizers. A pink-pigmented facultative methylotrophic bacterium Gen-B2 was isolated from sugarcane rhizosphere and its growth-promoting acti-vity was detected using in vitro experiments. Based on morphological, biochemical and molecular character-istics, Gen-B2 was identified as Methylobacterium popu-li. Pepper seedling inoculation significantly benefitted shoot/root fresh/dry weight, plant height, chlorophyll content and average true leaf number. Determination of activities related to growth promotion indicated that Gen-B2 promoted plant growth through nitrogen fixa-tion and indole acetic acid synthesis. The present study suggests that this bacterium has great potential to be used as a bioinoculant for sustainable cultivation.
Keywords
Growth Promotion, Indole-3-acetic Acid, Methylobacterium Populi, Nitrogen Fixation, Pepper Plants, Sugarcane Rhizosphere
User
Font Size
Information
- de Souza, R., Ambrosini, A. and Passaglia, L. M. P., Plant growth-promoting bacteria as inoculants in agricultural soils. Genet. Mol. Biol., 2015, 38, 401–419.
- Hungria, M. and Vargas, M. A. T., Environmental factors affect-ing N2 fixation in grain legumes in the tropics, with an emphasis on Brazil. Field Crops Res., 2000, 65, 151–164.
- Berendsen, R. L., Pieterse, C. M. J. and Bakker, P. A. H. M., The rhizosphere microbiome and plant health. Trends Plant Sci., 2012, 17, 478–486.
- Walker, T. S., Bais, H. P., Grotewold, E. and Vivanco, J. M., Root exudation and rhizosphere biology. Plant Physiol., 2003, 132, 44–51.
- Madhaiyan, M., Life, T. and Sa, T., Pink-pigmented facultative methylotrophic bacteria accelerate germination, growth and yield of sugarcane clone Co86032 (Saccharum officinarum L.). Biol. Fertil Soils, 2005, 41, 350–358.
- Rekadwad, B. N., Growth promotion of crop plants by Methylo-bacterium organophilum: efficient bio-inoculant and bio-fertilizer isolated from mud. Res. Biotechnol., 2014, 5, 1–6.
- Green, P. N., The genus Methylobacterium. In The Prokaryotes (eds Balows, A. et al.), Springer, New York, USA, 1992, 2nd edn, pp. 2342–2349.
- Camargo-Neves, A. A. and Araújo, W. L., Ecological and bio-technological aspects of methylobacterium mesophilicum. Appl. Microbiol. Bioeng., Elsevier Inc., 2018, 1, 87–99.
- Jourand, P. et al., Methylobacterium nodulans sp. nov., for a group of aerobic, facultatively methylotrophic, legume root-nodule-forming and nitrogen-fixing bacteria. Int. J. Syst. Evol. Mi-crobiol., 2004, 54, 2269–2273.
- Lacava, P. T., Araújo, W. L., Marcon, J., Maccheroni, W. and Azevedo, J. L., Interaction between endophytic bacteria from citrus plants and the phytopathogenic bacteria Xylella fastidiosa, causal agent of citrus-variegated chlorosis. Lett. Appl. Microbiol., 2004, 39, 55–59.
- Omer, Z. S., Tombolini, R., Broberg, A. and Gerhardson, B., Indole-3-acetic acid production by pink-pigmented facultative methylo-trophic bacteria. Plant Growth Regul., 2004, 43, 93–96.
- Lidstrom, M. E. and Chistoserdova, L., Plants in the pink: cytokinin production by Methylobacterium. J. Bacteriol., 2002, 184, 1818.
- Lacava, P. T. et al., Detection of siderophores in endophytic bac-teria Methylobacterium spp. associated with Xylella fastidiosa subsp. pauca. Pesqui. Agropecu. Bras., 2008, 43, 521–528.
- Senthilkumar, M., Madhaiyan, M., Sundaram, S. and Kannaiyan, S., Intercellular colonization and growth promoting effects of Methylobacterium sp. with plant-growth regulators on rice (Oryza sativa L. Cv CO-43). Microbiol. Res., 2009, 164, 92–104.
- Fedorov, D. N., Ekimova, G. A., Doronina, N. V. and Trotsenko, Y. A., 1-Aminocyclopropane-1-carboxylate (ACC) deaminases from Methylobacterium radiotolerans and Methylobacterium nodulans with higher specificity for ACC. FEMS Microbiol. Lett., 2013, 343, 70–76.
- Bulgarelli, D. et al., Structure and function of the bacterial root microbiota in wild and domesticated barley. Cell Host Microb., 2015, 17, 392–403.
- Whittenbury, R., S. L. D. and Wilkinson, J. F., Enrichment, isola-tion and some properties of methane-utilizing bacteria. J. Gen. Microbiol., 1970, 61, 205–218.
- Dong, X. Z. and Cai, M. Y., Manual of Systematic Identification of Common Bacteria, Science Press, Beijing, China, 2001.
- McDonald, I. R. and Murrell, J. C., The particulate methane mono-oxygenase gene pmoA and its use as a functional gene probe for methanotrophs. FEMS Microbiol. Lett., 1997, 156, 205–210.
- Lane, D. J., 16S/23S rRNA sequencing. In Nucleic Acid Techniques in Bacterial Systematics (eds Stackebrandt, E. and Goodfellow, M.), John Wiley, New York, USA, 1991, pp. 115–175.
- Senthilkumar, M. and Krishnamoorthy, R., Isolation and charac-terization of tomato leaf phyllosphere Methylobacterium and their effect on plant growth. Int. J. Curr. Microbiol. Appl. Sci., 2017, 6, 2121–2136.
- Kim, B. H. and Wimpenny, J. W. T., Growth and cellulolytic activity of Cellulomonas flavigena. Can. J. Microbiol., 1981, 27, 1260–1266.
- Louden Brian, C. and Haarmann Daniel, L. A. M., Use of blue agar CAS assay for siderophore detection. J. Microbiol. Biol. Educ., 2011, 12, 51–53.
- Ventorino, V., Sannino, F., Piccolo, A., Cafaro, V., Carotenuto, R. and Pepe, O., Methylobacterium populi VP2: plant growth-promo-ting bacterium isolated from a highly polluted environment for polycyclic aromatic hydrocarbon (PAH) biodegradation. Sci. World J., 2014, 37, 1–11.
- Penrose, D. M. and Glick, B. R., Methods for isolating and charac-terizing ACC deaminase-containing plant growth-promoting rhi-zobacteria. Physiol. Plant., 2003, 118, 10–15.
- Tani, A., Sahin, N., Fujitani, Y., Kato, A., Sato, K. and Kimbara, K., Methylobacterium species promoting rice and barley growth and interaction specificity revealed with whole-cell matrix-assisted laser desorption/ionization-time-of-flight mass spectrometry (MALDI-TOF/MS) analysis. PLoS ONE, 2015, 10, 1–15.
- Madhaiyan, M. et al., Growth promotion and induction of system-ic resistance in rice cultivar Co-47 (Oryza sativa L.) by Methylo-bacterium spp. Bot. Bull. Acad. Sin., 2004, 45, 315–324.
- Raja, K., Sivasubramaniam, K. and Anandham, R., Seed treatment with liquid microbial consortia for germination and vigour improve-ment in tomato (Solanum lycopersicum L.). J. Appl. Hortic., 2019, 21, 195–200.
- Machlin, S. M. and Hanson, R. S., Nucleotide sequence and tran-scriptional start site of the Methylobacterium organophilum XX methanol dehydrogenase structural gene. J. Bacteriol., 1988, 170, 4739–4747.
- Van Aken, B., Peres, C. M., Doty, S. L., Yoon, J. M. and Schnoor, J. L., Methylobacterium populi sp. nov., a novel aerobic, pink-pig-mented, facultatively methylotrophic, methane-utilizing bacterium isolated from poplar trees (Populus deltoids nigra DN34). Int. J. Syst. Evol. Microbiol., 2004, 54, 1191–1196.
- Madhaiyan, M., Poonguzhali, S., Sundaram, S. P. and Sa, T., A new insight into foliar applied methanol influencing phylloplane methylotrophic dynamics and growth promotion of cotton (Gossy-pium hirsutum L.) and sugarcane (Saccharum officinarum L.). Environ. Exp. Bot., 2006, 57, 168–176.
- Nysanth, N. S., Meenakumari, K. S., Elizabeth K. Syriac and Subha, P., Isolation, characterization and evaluation of pink pigmented facultative methylotrophs (PPFMs) Associated with Paddy. Int. J. Curr. Microbiol. Appl. Sci., 2018, 7, 2187–2210.
- Lee, K. H., Munusamy, M., Kim, C. W., Lee, H. S., Selvaraj, P. and Sa, T., Isolation and characterization of the IAA producing methylotrophic bacteria from phyllosphere of rice cultivars (Oryza sativa L.). Korean J. Soil Sci. Fert., 2004, 37(4), 235–244.
- Ivanova, E. G., Doronina, N. V. and Trotsenko, Y. A., Aerobic methylobacteria are capable of synthesizing auxins. Microbiology, 2001, 70, 392–397.
- Sy, A. et al., Methylotrophic Methylobacterium bacteria nodulate and fix nitrogen in symbiosis with legumes. J. Bacteriol., 2001, 183, 214–220.
Abstract Views: 374
PDF Views: 159