Open Access Open Access  Restricted Access Subscription Access

Population genetic structure and migration pattern of Nilaparvata lugens (Stål.) (Hemiptera: Delphacidae) populations in India based on mitochondrial COI gene sequences


Affiliations
1 Division of Crop Protection, ICAR-National Rice Research Institute, Cuttack 753 006, India
2 ICAR-Reseach Complex for Eastern Region, Farming Systems Research Centre for Hill and Plateau Region, Ranchi 834 010, India
3 Division of Crop Protection, ICAR-National Rice Research Institute, Cuttack 753 006, India
 

Despite the economic and ecological impact of the brown planthopper, Nilaparvata lugens infestation associated with rice cultivation in India, studies on its genetic structure are lacking. Hence, the present study was conducted to assess the genetic variability of N. lugens in India. The study evaluated the diversity in N. lugens populations using mitochondrial cytochrome oxidase subunit I gene sequences from India, and compared them with the Bangladesh, China and Japan populations. In all, 47 unique haplotypes were identified and the haplotype number varied from 6 to 18 in the sampled populations. Genetic diversity indices like nucleotide diversity (0.004), average number of nucleotide differences (1.98), haplotype diversity (0.667) and haplotype number (47) of N. lugens populations from India revealed a low level of genetic diversity. A highly significant negative correlation of the demographic history of N. lugens populations along with no significant sum of square deviations indicated possible recent expansion of the brown planthopper in India. A non-significant correlation in isolation pattern by distance results indicated that geographic barriers present in the country are not sufficient for genetic differentiation among N. lugens from different migratory populations. In this study, the genetic diversity of N. lugens populations from India is compared with other Asian populations
User
Notifications
Font Size

  • Pandi, G.G.P., Chander, S., Pal, M. and Pathak, H., Impact of elevated CO2 and temperature on brown planthopper population in rice ecosystem. Proc. Natl. Acad. Sci. India, Sect. B, 2016, 88(1), 57–64; doi:10.1007/s40011-016-0727-x.
  • Jena, M. et al., Paradigm shift of insect pests in rice ecosystem and their management strategy. Oryza, 2018, 55, 82–89; doi:10.5958/2249-5266.2018.00010.3.
  • Pandi, G. G. P., Chander, S., Pal, M. and Soumia, P. S., Impact of elevated CO2 on Oryza sativa phenology and brown planthopper, Nilaparvata lugens (Hemiptera: Delphacidae) population. Curr. Sci., 2018, 114(8), 1767–1777; doi:10.18520/cs/v114/i08/1767-1777.
  • Li, S., Wang, H. and Zhoum, G. S., Synergism between Southern rice black-streaked dwarf virus and Rice ragged stunt virus enhances their insect vector acquisition. Phytopathology, 2014, 104(7), 794–799; doi:10.1094/PHYTO-11-13-0319-R. PMID: 24915431.
  • Bottrell, D. G. and Schoenly, K. G., Resurrecting the ghost of green revolutions past: the brown planthopper as a recurring threat to high-yielding rice production in tropical. J. Asia-Pac. Entomol., 2012, 15(1), 122–140; https://doi.org/10.1016/j.aspen.2011.09.004.
  • Otuka, A., Migration of rice planthoppers and their vectored reemerging and novel rice viruses in East Asia. Front. Microbiol., 2013, 4, 309; doi:10.3389/fmicb.2013.00309.
  • Hu, G., Lu, M. H., Tuan, H. A. and Liu, W. C., Population dynamics of rice planthoppers, Nilaparvata lugens and Sogatella furcifera (Hemiptera, Delphacidae) in Central Vietnam and its effects on their spring migration to China. Bull. Entomol. Res., 2017, 107, 369–381; https://doi.org/10.1017/S0007485316001024.
  • EPPO, European and Mediterranean Plant Protection Organization global database, 2021; https://gd.eppo.int/taxon/NILALU/distribution (accessed on 20 December 2021).
  • Anant, A. K. et al., Genetic dissection and identification of candidate genes for brown planthopper, Nilaparvata lugens (Delphacidae: Hemiptera) resistance in farmers’ varieties of rice in Odisha. Crop Prot., 2021, 144, 105600; https://doi.org/10.1016/j.cropro.2021.105600.
  • Matsumura, M., Takeuchi, H., Satoh, M., Sanada-Morimura, S., Otuka, A., Watanabe, T. and Van, T. D., Species specific insecticide resistance to imidacloprid and fipronil in the rice planthoppers Nilaparvata lugens and Sogatella furcifera in East and South-east Asia. Pest Manage. Sci., 2008, 64(11), 1115–1121; doi:10.1002/ps.1641. PMID: 18803329.
  • Matsumoto, Y., Matsumura, M., Sanada-Morimura, S., Hirai, Y., Sato, Y. and Noda, H., Mitochondrial COX sequences of Nilaparvata lugens and Sogatella furcifera (Hemiptera, Delphacidae): low specificity among Asian planthopper populations. Bull. Entomol. Res., 2013, 103(4), 382–392; doi:10.1017/S000748531200082X. PMID: 23537548.
  • Naeemullah, M., Sharma, P. N., Tufail, M., Mori, N., Matsumura, M., Takeda, M. and Nakamura, C., Characterization of brown planthopper strains based on their differential responses to introgressed resistance genes and on mitochondrial DNA polymorphism. Appl. Entomol. Zool., 2009, 44, 475–483; https://doi.org/10.1303/aez.2009.475.
  • Rollins, L. A., Woolnough, A. P., Sinclair, R., Mooney, N. J. and Sherwin, W. B., Mitochondrial DNA offers unique insights into invasion history of the common starling. Mol. Ecol., 2011, 20(11), 2307–2317; doi:10.1111/j.1365-294X.2011.05101.x. PMID: 21507095.
  • Wan, X., Liu, Y. and Zhang, B., Invasion history of the oriental fruit fly, Bactrocera dorsalis, in the Pacific-Asia region: two main invasion routes. PLOS ONE, 2012, 7(5), e36176; https://doi.org/10.1371/journal.pone.0036176.
  • Choudhary, J. S., Naaz, N., Prabhakar, C. S. and Lemtur, M., Genetic analysis of oriental fruit fly, Bactrocera dorsalis (Diptera: Tephritidae) populations based on mitochondrial COX 1 and NAD 1 gene sequences from India and other Asian countries. Genetica, 2016, 144, 611–623; doi:10.1007/s10709-016-9929-7. PMID: 27699519.
  • Choudhary, J. S., Naaz, N., Lemtur, M., Das, B., Singh, A.K., Bhatt, B. P. and Prabhakar, C. S., Genetic analysis of Bactrocera zonata (Diptera: Tephritidae) populations from India based on COX 1 and NAD 1 gene sequences. Mitochondrial DNA A, 2018, 29(5), 727–736; https://doi.org/10.1080/24701394.2017.1350952.
  • Pandi, G. G. P. et al., Molecular diversity of Nilaparvata lugens (Stål.) (Hemiptera: Delphacidae) from India based on internal transcribed spacer 1 (ITSI) gene. Curr. Sci., 2022, 122(12), 1392–1400.
  • Watanabe, S. and Melzer, M. J., A multiplex PCR assay for differentiating coconut rhinoceros beetle (Coleoptera: Scarabaeidae) from oriental flower beetle (Coleoptera: Scarabaeidae) in early life stages and excrement. J. Econ. Entomol., 2017, 110, 678–682; doi:10.1093/jee/tow299. PMID: 28115497.
  • Noda, H., How can planthopper genomics be useful for planthopper management? In Planthoppers: New Threats to the Sustainability of Intensive Rice Production Systems in Asia (eds Heong, K. L. and Hardy, B.), International Rice Research Institute, Philippines, 2009, pp. 429–446.
  • Roderick, G. K. and Navajas, M., Genes in new environments: genetics and evolution in biological control. Nature Rev. Genet., 2003, 4, 889–899; https://doi.org/10.1038/nrg1201.
  • Wilson, M. R. and Claridge, M. F., Handbook for the Identification of Leafhoppers and Planthoppers of Rice, CAB International, London, UK, 1991, p. 143; ISBN 0-85198-692-7.
  • Mun, J. H., Song, Y. H., Heong, K. L. and Roderick, G. K., Genetic variation among Asian populations of rice planthoppers, Nilaparvata lugens and Sogatella furcifera (Hemiptera: Delphacidae): mitochondrial DNA sequences. Bull. Entomol. Res., 1999, 89, 245–253; doi:10.1017/S000748539900036X.
  • Huang, X. and Madan, A., CAP3: a DNA sequence assembly program. Genome Res., 1999, 9(9), 868–877; doi:10.1101/gr.9.9.868. PMID: 10508846.
  • Tamura, K., Stecher, G., Peterson, D., Filipski, A. and Kumar, S., MEGA6: molecular evolutionary genetics analysis version 6.0. Mol. Biol. Evol., 2013, 30(12), 2725–2729; doi:10.1093/molbev/mst197. Epub 2013 Oct 16. PMID: 24132122.
  • Librado, P. and Rozas, J., DnaSP V5: software for comprehensive analysis of DNA polymorphism data. Bioinformatics, 2009, 25(11), 1451–1452; https://doi.org/10.1093/bioinformatics/btp187.
  • Excoffier, L. and Lischer, H. E. L., Arlequin suite ver. 3.5, a new series of programs to perform population genetics analyses under Linux and Windows. Mol. Ecol. Resour., 2010, 10(3), 564–567; doi:10.1111/j.1755-0998.2010.02847.x. PMID: 21565059.
  • Bandelt, H., Forster, P. and Roehl, A., Median-joining networks for inferring intraspecific phylogenies. Mol. Biol. Evol., 1999, 16(1), 37–48; doi:10.1093/oxfordjournals.molbev.a026036. PMID: 10331250.
  • Dupanloup, I., Schneider, S. and Excoffier, L., A simulated annealing approach to define the genetic structure of populations. Mol. Ecol., 2002, 11, 2571e2581; doi:10.1046/j.1365-294x.2002.01650.x. PMID: 12453240.
  • Tajima, F., Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics, 1989, 123(3), 585–595; doi:10.1093/genetics/123.3.585. PMID: 2513255.
  • Fu, Y. X., Statistical tests of neutrality of mutations against population growth, hitchhiking and background selection. Genetics, 1997, 147, 915–925; doi:10.1093/genetics/147.2.915. PMID: 9335623.
  • Rogers, A. R. and Harpending, H., Population growth makes waves in the distribution of pairwise differences. Mol. Biol. Evol., 1992, 9(3), 552–569; doi:10.1093/oxfordjournals.molbev.a040727.
  • Mantel, N., The detection of disease and a generalized regression approach. Cancer Res., 1967, 27, 209–220. PMID: 6018555.
  • Miller, M. P., Alleles in space (AIS): computer software for the joint analysis of interindividual spatial and genetic information. J. Hered., 2005, 96(6), 722–724; https://doi.org/10.1093/jhered/esi119.
  • Beerli, P. and Felsenstein, J., Maximum-likelihood estimation of a migration matrix and effective population sizes in subpopulations by using a coalescent approach. Proc. Natl. Acad. Sci. USA, 2001, 98(8), 4563–4568; https://doi.org/10.1073/pnas.081068098.
  • Rosetti, N. and Remis, M. I., Spatial genetic structure and mitochondrial DNA phylogeography of argentinean populations of the grasshopper Dichroplus elongatus. PLoS ONE, 2012, 7(7), e40807; https://doi.org/10.1371/journal.pone.0040807.
  • Grant, W. S. and Bowen, B. W., Shallow population histories in deep evolutionary lineages of marine fishes: insights from sardines and anchovies and lessons for conservation. J. Hered., 1998, 89, 415–426; https://doi.org/10.1093/jhered/89.5.415.
  • Suarez, A. V. and Tsutsui, N. D., The evolutionary consequences of biological invasions. Mol. Ecol., 2008, 17(1), 351–360; doi: 10.1111/j.1365-294X.2007.03456.x. PMID: 18173507.
  • Grapputo, A., Bisazza, A. and Pilastro, A., Invasion success despite reduction of genetic diversity in the European populations of eastern mosquito fish (Gambusia holbrooki). Ital. J. Zool., 2006, 73, 67–73; https://doi.org/10.1080/11250000500502111.
  • Slatkin, M. and Hudson, R. R., Pairwise comparison of mitochondrial DNA sequences in stable and exponentially growing populations. Genetics, 1991, 129(2), 555–562; doi:10.1093/genetics/129.2.555.
  • Hereward, J. P., Cai, X., Matias, A. M. A., Walter, G. H., Xu, C. and Wang, Y., Migration dynamics of important rice pest: the brown planthopper (Nilaparvata lugens) across Asia-insights from population genomics. Evol. Appl., 2020, 13(9), 2449–2459; https://doi.org/10.1111/eva.13047.
  • Harpending, H. C., Batzer, M. A., Gurven, M., Jorde, L. B., Rogers, A. R. and Sherry, S. T., Genetic traces of ancient demography. Proc. Natl. Acad. Sci. USA, 1998, 95, 1691–1697; https://doi.org/10.1073/pnas.95.4.1961.
  • Slatkin, M., Gene flow in natural populations. Annu. Rev. Evol. Syst., 1985, 16, 393–430; https://doi.org/10.1146/annurev.es.16.110185.002141.
  • Schneider, S. and Excoffier, L., Estimation of past demographic parameters from the distribution of pairwise differences when the mutation rates vary among sites: application to human mitochondrial DNA. Genetics, 1999, 152(3), 1079–1089.
  • Wan, X., Nardi, F., Zhang, B. and Liu, Y., The oriental fruit fly, Bactrocera dorsalis, in China: origin and gradual inland range expansion associated with population growth. PLoS ONE, 2011, 6(10), e25238; https://doi.org/10.1371/journal.pone.0025238.
  • Wei, S. J., Genetic structure and demographic history reveal migration of the diamondback moth Plutellaxylostella (Lepidoptera: Plutellidae) from the southern to northern regions of China. PLoS ONE, 2013, 8, e59654; https://doi.org/10.1371/journal.pone.0059654.
  • Irwin, D. E., Phylogeographic breaks without geographic barriers to gene flow. Evolution, 2002, 56(12), 2383–2394; https://doi.org/10.1554/0014-3820(2002)056[2383:PBWGBT]2.0.CO;2.

Abstract Views: 393

PDF Views: 127




  • Population genetic structure and migration pattern of Nilaparvata lugens (Stål.) (Hemiptera: Delphacidae) populations in India based on mitochondrial COI gene sequences

Abstract Views: 393  |  PDF Views: 127

Authors

Guru-Pirasanna-Pandi Govindharaj
Division of Crop Protection, ICAR-National Rice Research Institute, Cuttack 753 006, India
Jaipal Singh Choudhary
ICAR-Reseach Complex for Eastern Region, Farming Systems Research Centre for Hill and Plateau Region, Ranchi 834 010, India
Aashish Kumar Anant
Division of Crop Protection, ICAR-National Rice Research Institute, Cuttack 753 006, India
C. Parameswaran
Division of Crop Protection, ICAR-National Rice Research Institute, Cuttack 753 006, India
G. Basana-Gowda
Division of Crop Protection, ICAR-National Rice Research Institute, Cuttack 753 006, India
Totan Adak
Division of Crop Protection, ICAR-National Rice Research Institute, Cuttack 753 006, India
P. Paneerselvam
Division of Crop Protection, ICAR-National Rice Research Institute, Cuttack 753 006, India
M. Annamalai
Division of Crop Protection, ICAR-National Rice Research Institute, Cuttack 753 006, India
Naveenkumar Patil
Division of Crop Protection, ICAR-National Rice Research Institute, Cuttack 753 006, India
Prakash Chandra Rath
Division of Crop Protection, ICAR-National Rice Research Institute, Cuttack 753 006, India

Abstract


Despite the economic and ecological impact of the brown planthopper, Nilaparvata lugens infestation associated with rice cultivation in India, studies on its genetic structure are lacking. Hence, the present study was conducted to assess the genetic variability of N. lugens in India. The study evaluated the diversity in N. lugens populations using mitochondrial cytochrome oxidase subunit I gene sequences from India, and compared them with the Bangladesh, China and Japan populations. In all, 47 unique haplotypes were identified and the haplotype number varied from 6 to 18 in the sampled populations. Genetic diversity indices like nucleotide diversity (0.004), average number of nucleotide differences (1.98), haplotype diversity (0.667) and haplotype number (47) of N. lugens populations from India revealed a low level of genetic diversity. A highly significant negative correlation of the demographic history of N. lugens populations along with no significant sum of square deviations indicated possible recent expansion of the brown planthopper in India. A non-significant correlation in isolation pattern by distance results indicated that geographic barriers present in the country are not sufficient for genetic differentiation among N. lugens from different migratory populations. In this study, the genetic diversity of N. lugens populations from India is compared with other Asian populations

References





DOI: https://doi.org/10.18520/cs%2Fv123%2Fi3%2F461-470