Open Access Open Access  Restricted Access Subscription Access

Application of GNSS-supported static terrestrial lidar in mapping landslide processes in the Himalaya


Affiliations
1 Geohazards Research and Management Centre, Geological Survey of India, Kolkata 700 091, India, India
 

Site-specific topographic survey of 15 landslides in the four mountainous states of India, namely Uttarakhand, Jammu & Kashmir, Sikkim and Nagaland, was carried out through a terrestrial laser scanner campaign. The versatility of the lidar instrument in topographic surveys and its advantages over conventional survey practices are highlighted. The effective use of the static terrestrial lidar in the rapid characterization and hazard assessment of landslides in this study is presented for adoption as a meaningful hazard assessment strategy in the hilly terrains
User
Notifications
Font Size

  • Kvamme, K. L., Ernenwein, E. G. and Markussen, C. J., Robotic total station for microtopographic mapping: an example from the Northern Great Plains. Archaeol. Prospect., 2006, 13, 91–102; doi: 10.1002/arp.270.
  • Schneider, T. D. and Panich, L. M., Total station mapping: practical examples from Alta and Baja California. J. Calif. Great Basin Anthropol., 2008, 28(2), 166–183.
  • McCaffrey, K. J. W. et al., Unlocking the spatial dimension: digital technologies and the future of geoscience fieldwork. J. Geol. Soc. London, 2005, 162, 927–938.
  • Jaboyedoff, M., Oppikofer, T., Abellán, A., Derron, M. H., Loye, A., Metzger, R. and Pedrazzini, A., Use of LIDAR in landslide investigations: a review. Nat. Hazards, 2012, 61(1), 5–28; https://doi.org/10.1007/s1106 9-010-9634-2.
  • Abellan, A., Derron, Marc-Henri and Jaboyedoff, M., Use of 3D point clouds in geohazards. Remote Sensing, 2016, 8, 130; doi: 10.3390/rs8020130.
  • Haneberg, W. C., Cole, W. F. and Kasali, G., High-resolution lidar-based landslide hazard mapping and modeling, UCSF Parnassus Campus; San Francisco, USA. Bull. Eng. Geol. Environ., 2009, 68, 263–276; doi:10.1007/s10064-009-0204-3.
  • Dunning, S. A., Massey, C. I. and Rosser, N. J., Structural and geomorphological features of landslides in the Bhutan Himalaya derived from terrestrial laser scanning. Geomorphology, 2009, 103, 17–29; doi:10.1016/j.geomorph.2008.04.013.
  • Derron, M. H. and Jaboyedoff, M., LIDAR and DEM techniques for landslides monitoring and characterization. Nat. Hazards Earth Syst. Sci., 2010, 10, 1877–1879.
  • Oppikofer, T. et al., Investigation and monitoring of rock slope instabilities in Norway by terrestrial laser scanning. In Landslides and Engineered Slopes: Protecting Society through Improved Understanding (eds Eberhardt et al.), Taylor & Francis Group, London, UK, 2012, pp. 1235–1241; ISBN 978-0-415-62123-6.
  • Pawłuszek, K., Landslide features identification and morphology investigation using high-resolution DEM derivatives. Nat. Hazards, 2018; https://doi.org/10.1007/s11069-018-3543-
  • Gordon, S., Lichti, D. and Stewart, M., Application of a high-resolution, ground-based laser scanner for deformation measurements. In Proceedings of the 10th International FIG Symposium on Deformation Measurements, Orange, California, USA, 19–22 March 2001, pp. 23–32.
  • Chen, R. F., Chang, K. J., Angelier, J., Chan, Y. C., Deffontaines, B., Lee, C. T. and Lin, M. L., Topographical changes revealed by high-resolution airborne LiDAR data: the 1999 Tsaoling landslide induced by the Chi-Chi earthquake. Eng. Geol., 88, 160–172; doi:10.1016/j.enggeo.2006.09.008.
  • Corsini, A., Borgatti, L., Coren, F. and Vellico, M., Use of multi-temporal airborne LiDAR surveys to analyse post-failure behaviour of earthslides. Can. J. Remote Sensing, 2007, 33(2), 116–120.
  • Jaboyedoff, M. et al., Use of terrestrial laser scanning for the characterization of retrogressive landslides in sensitive clay and rotational landslides in river banks. Can. Geotech. J., 2009, 46, 1379–1390.
  • Abellan, A., Jaboyedoff, M., Oppikofer, T. and Vilaplana, J. M., Detection of millimetric deformation using a terrestrial laser scanner: experiment and application to rockfall event. Nat. Hazards Earth Syst. Sci., 2009, 9, 365–372; doi:10.5194/nhess-9-365-2009.
  • Rosser, N. J., Petley, D. N., Lim, M., Dunning, S. A. and Allison, R. J., Terrestrial laser scanning for monitoring the process of hard rock coastal cliff erosion. Q. J. Eng. Geol., 2005, 38(4), 363–375; doi:10.1144/1470-9236/05-008.
  • Travelletti, J., Oppikofer, T., Delacourt, C., Malet. J.-P. and Jaboyedoff, M., Monitoring landslide displacements during a controlled rain experiment using a long-range terrestrial laser scanning (TLS). Int. Arch. Photogramm. Remote Sensing, 2008, 37(B5), 485–490.
  • Baldo, M., Bicocchi, C., Chiocchini, U., Giordan, D. and Lollino, G., LiDAR monitoring of mass wasting processes: the Radicofani landslide, Province of Siena, Central Italy. Geomorphology, 2008, 105, 193–201; doi:10.1016/j.geomorph.2008.09.015.
  • Slob, S., van Knapen, B., Hack, R., Turner, K. and Kemeny, J., Method for automated discontinuity analysis of rock slopes with three-dimensional laser scanning. Transp. Res. Rec.: J. Trans. Res. Board, 2005, 1913(1), 187–194; doi:10.1177/0361198105191300118.
  • Olariu, M. I., Ferguson, J. F. and Aiken, C. L. V., Outcrop fracture characterization using terrestrial laser scanners: deepwater jackfork sandstone at Big Rock Quarry, Arkansas. Geosphere, 2008, 4(1), 247–259; doi:10.1130/GES00139.1.
  • Lato, M., Diederichs, M. S., Hutchinson, D. J. and Harrap, R., Optimization of lidar scanning and processing for automated structural evaluation of discontinuities in rockmasses. Int. J. Rock Mech. Min. Sci., 2009, 46, 194–199; doi:10.1016/j.ijrmms.2008.04.007.
  • Sturzenegger, M. and Stead, D., Close-range terrestrial digital photogrammetry and terrestrial laser scanning for discontinuity characterization on rock cuts. Eng. Geol., 2009, 106, 163–182; doi:10.1016/j.enggeo.2009.03.004.
  • Gigli, G. and Casagli, N., Semi-automatic extraction of rock mass structural data from high resolution LiDAR point clouds. Int. J. Rock Mech. Min. Sci., 2011, 48(2), 187–198; doi:10.1016/j.ijrmms.2010.11.009.
  • Wehr, A. and Lohr, U., Airborne laser scanning – an introduction and overview. ISPRS J. Photogramm. Remote Sensing, 1999, 54(2–3), 68–82; doi:10.1016/s0924-2716(99)00011-8.
  • Petrie, G. and Toth, C. K., I. Introduction to laser ranging, profiling and scanning, II. Terrestrial laser scanners. In Topographic Laser Ranging and Scanning: Principles and Processing (eds Shan, J. and Toth, C. K.), CRC Press, Taylor & Francis, 2008, 2nd edn, pp. 1–6.
  • RIEGL Laser Measurement Systems GmbH, RIEGL VZ-4000 data sheet, 2017; www.riegl.com
  • Abd-Elmaaboud, A. M., El-Tokhey, M. E., Ragheb, A. E. and Mogahed, Y. M., Comparative assessment of terrestrial laser scanner against traditional surveying methods. Int. J. Eng. Appl. Sci., 2019, 6(4), 79–84.
  • Fan, L. and Atkinson, P. M., Accuracy of digital elevation models derived from terrestrial laser scanning data. IEEE Geosci. Remote Sensing Lett., 2015, 12(9), 1923–1927.
  • Su, J. and Bork, E., Influence of vegetation, slope and lidar sampling angle on DEM accuracy. Photogramm. Eng. Remote Sensing, 2006, 72(11), 1265–1274.
  • Soudarissanane, S., Lindenbergh, R., Menenti, M. and Teunissen, P., Incidence angle influence on the quality of terrestrial laser scanning points. In Proceedings of the ISPRS Workshop on Laser Scanning, Paris, France, 1–2 September 2009, p. 38.
  • Voegtle, T., Schwab, I. and Landes, T., Influences of different materials on the measurement of a terrestrial laser scanner (TLS). In Proceedings of the XXI Congress, International Society for Photogrammetry and Remote Sensing, Beijing, 2008, pp. 1061–1066.
  • Rasshofer, R., Spies, M. and Spies, H., Influences of weather phenomena on automotive laser radar systems. Adv. Radio Sci., 2011, 9, 49–60; doi:9.10.5194/ars-9-49-2011.
  • Hejbudzka, K., Lindenbergh, R., Soudarissanane, S. and Humme, A., Influence of atmospheric conditions on the range distance and number of returned points in Leica ScanStation 2 point clouds. Int. Arch. Photogramm., Remote Sensing Spat. Inf. Sci., 2010, XXXVIII, 282–287.
  • Spaete, L., Glenn, N., Derryberry, D., Sankey, T., Mitchell, J. and Hardegree, S., Vegetation and slope effects on accuracy of a LIDAR-derived DEM in the sagebrush steppe. Remote Sensing Lett., 2011, 2, 317–326; 10.1080/01431161.2010.515267.
  • Pfeifer, N., Gorte, B. and Oude, E. S., Influences of vegetation on laser altimetry – analysis and correction approaches. Int. Arch. Photogramm., Remote Sensing Spat. Inf. Sci., 2012, 36.
  • Harding, D., Pulsed laser altimeter ranging techniques and implications for terrain mapping. In Topographic Laser Ranging and Scanning: Principles and Processing (eds Shan, J. and Toth, C. K.), CRC Press, Taylor & Francis, 2008, pp. 173–194.
  • Heritage, G. L., Milan, D. J., Large, A. R. G. and Fuller, I. C., Influence of survey strategy and interpolation model on DEM quality. Geomorphology, 2009, 112(3/4), 334–344.
  • Erdogan, S., A comparison of interpolation methods for producing digital elevation models at the field scale. Earth Surf. Process. Landf., 2009, 34(3), 366–376.
  • Buckley, S. J., Howell, J. A., Enge, H. D. and Kurz, T. H., Terrestrial laser scanning in geology: data acquisition, processing and accuracy considerations. J. Geol. Soc., London, 2008, 165, 625–638.
  • Hunter, G. J. and Goodchild, M. F., Modeling uncertainty of slope and aspect estimates derived from spatial databases. Geogr. Anal., 1997, 29(1), 35–49.
  • Aquilar, F. J., Aguera, F., Aquilar, M. A. and Carvajal, F., Effects of terrain morphology, sampling density and interpolation methods on grid DEM accuracy. Photogramm. Eng. Remote Sensing, 2005, 71(7), 805–816.
  • SoI, Political map of India, English 10th edition, Survey of India, Government of India, 2020; https://surveyofindia.gov.in/documents/polmap-eng-11012021.jpg
  • Chasie, M., Theophilus, P. K., Chakraborty, D. and Sarkar, N. K., Detailed geotechnical evaluation of the Tawang Monastery landslide, Arunachal Pradesh. Indian J. Geosci., 2017, 71(4), 627–634.

Abstract Views: 341

PDF Views: 160




  • Application of GNSS-supported static terrestrial lidar in mapping landslide processes in the Himalaya

Abstract Views: 341  |  PDF Views: 160

Authors

Megotsohe Chasie
Geohazards Research and Management Centre, Geological Survey of India, Kolkata 700 091, India, India
P. K. Theophilus
Geohazards Research and Management Centre, Geological Survey of India, Kolkata 700 091, India, India
Akshaya Kumar Mishra
Geohazards Research and Management Centre, Geological Survey of India, Kolkata 700 091, India, India
Saibal Ghosh
Geohazards Research and Management Centre, Geological Survey of India, Kolkata 700 091, India, India
Shib Kanta Das
Geohazards Research and Management Centre, Geological Survey of India, Kolkata 700 091, India, India

Abstract


Site-specific topographic survey of 15 landslides in the four mountainous states of India, namely Uttarakhand, Jammu & Kashmir, Sikkim and Nagaland, was carried out through a terrestrial laser scanner campaign. The versatility of the lidar instrument in topographic surveys and its advantages over conventional survey practices are highlighted. The effective use of the static terrestrial lidar in the rapid characterization and hazard assessment of landslides in this study is presented for adoption as a meaningful hazard assessment strategy in the hilly terrains

References





DOI: https://doi.org/10.18520/cs%2Fv123%2Fi7%2F844-855