Open Access
Subscription Access
Structural characterization of a putative recombinant l-amino acid oxidase from Leptospira interrogans
Amino acid oxidases (AOs) are flavin adenine dinucleotide (FAD)-dependent dimeric enzymes that stereo specifically catalyse the deamination of an a-amino acid leading to an a-keto acid. Putative Leptospira interrogans recombinant l-amino acid oxidase (Li-rLAO; lacking 20 residues corresponding to the N-terminal signal sequence) was cloned, expressed, purified, and its three-dimensional structure was determined by X-ray crystallography at a resolution of 1.8 Å. The active site could be easily identified by the presence of electron density corresponding to a non-covalently bound FAD in both protomers of the dimeric enzyme. Structural analysis of Li-rLAO revealed that its polypeptide fold is similar to those of the previously determined homologous structures as available in the Protein Data Bank. However, a substrate-binding residue found at the active site of other previously determined homologous structures was not conserved in Li-rLAO, suggesting that its specificity may differ from those of earlier reported structures. Not surprisingly, Li-rLAO showed no activity for most amino acids and amines; it exhibited a low activity only with l-arginine as the substrate. The catalytic properties of Li-rLAO could be rationalized in terms of its three-dimensional structure
User
Font Size
Information
- Kobayashi, Y., Discovery of the causative organism of Weil’s disease: historical view. J. Infect. Chemother., 2001, 7, 10–15.
- Haake, D. A., Spirochaetal lipoproteins and pathogenesis. Microbiology, 2000, 146(Pt 7), 1491–1504.
- Cullen, P. A., Haake, D. A. and Adler, B., Outer membrane proteins of pathogenic spirochetes. FEMS Microbiol. Rev., 2004, 28, 291–318.
- Trueba, G. A., Bolin, C. A. and Zuerner, R. L., Characterization of the periplasmic flagellum proteins of Leptospira interrogans. J. Bacteriol., 1992, 174, 4761–4768.
- Levett, P. N., Leptospirosis. Clin. Microbiol. Rev., 2001, 14, 296–326.
- Adler, B. and de la Pena Moctezuma, A., Leptospira and leptospirosis. Vet. Microbiol., 2010, 140, 287–296.
- Marshall, R. B., The route of entry of leptospires into the kidney tubule. J. Med. Microbiol., 1976, 9, 149–152.
- Morrison, W. I. and Wright, N. G., Canine leptospirosis: an immunopathological study of interstitial nephritis due to Leptospira canicola. J. Pathol., 1976, 120, 83–89.
- Ballard, S. A., Williamson, M., Adler, B., Vinh, T. and Faine, S., Interactions of virulent and avirulent leptospires with primary cultures of renal epithelial cells. J. Med. Microbiol., 1986, 21, 59–67.
- Yang, C. W., Wu, M. S. and Pan, M. J., Leptospirosis renal disease. Nephrol. Dial. Transplant., 2001, 16(Suppl 5), 73–77.
- Silbernagl, S., Kinetics and localization of tubular resorption of acidic amino-acids – a microperfusion and free-flow micropuncture study in rat-kidney. Pflug. Arch. Eur. J. Physiol., 1983, 396, 218–224.
- Silbernagl, S. and Volkl, H., Molecular specificity of the tubular resorption of acidic amino-acids – a continuous microperfusion study in rat–kidney in vivo. Pflug. Arch. Eur. J. Physiol., 1983, 396, 225–230.
- Brosnan, J. T., The 1986 Borden award lecture. The role of the kidney in amino acid metabolism and nutrition. Can. J. Physiol. Pharmacol., 1987, 65, 2355–2362.
- Silbernagl, S., The renal handling of amino acids and oligopeptides. Physiol. Rev., 1988, 68, 911–1007.
- Dantzler, W. H. and Silbernagl, S., Amino-acid transport by juxtamedullary nephrons – distal reabsorption and recycling. Am. J. Physiol., 1988, 255, F397–F407.
- Nakanishi, T., Shimizu, A., Saiki, K., Fujiwara, F., Funahashi, S. and Hayashi, A., Quantitative analysis of urinary pyroglutamic acid in patients with hyperammonemia. Clin. Chim. Acta, 1991, 197, 249–255.
- van de Poll, M. C., Soeters, P. B., Deutz, N. E., Fearon, K. C. and Dejong, C. H., Renal metabolism of amino acids: its role in inter-organ amino acid exchange. Am. J. Clin. Nutr., 2004, 79, 185–197.
- Hossain, G. S., Li, J. H., Shin, H. D., Du, G. C., Liu, L. and Chen, J., L-Amino acid oxidases from microbial sources: types, properties, functions, and applications. Appl. Microbiol. Biotechnol., 2014, 98, 1507–1515.
- Sacchi, S., Caldinelli, L., Cappelletti, P., Pollegioni, L. and Molla, G., Structure–function relationships in human D-amino acid oxidase. Amino Acids, 2012, 43, 1833–1850.
- Pollegioni, L., Sacchi, S. and Murtas, G., Human D-amino acid oxidase: structure, function, and regulation. Front. Mol. Biosci., 2018, 5, 107.
- Hughes, A. L., Origin and diversification of the L-amino oxidase family in innate immune defenses of animals. Immunogenetics, 2010, 62, 753–759.
- Kasai, K., Ishikawa, T., Nakamura, T. and Miura, T., Antibacterial properties of L-amino acid oxidase: mechanisms of action and perspectives for therapeutic applications. Appl. Microbiol. Biotechnol., 2015, 99, 7847–7857.
- Du, X. Y. and Clemetson, K. J., Snake venom L-amino acid oxidases. Toxicon, 2002, 40, 659–665.
- Izidoro, L. F. et al., Snake venom L-amino acid oxidases: trends in pharmacology and biochemistry. Biomed Res Int., 2014, 2014, 196754.
- Campillo-Brocal, J. C., Lucas-Elio, P. and Sanchez-Amat, A., Distribution in different organisms of amino acid oxidases with FAD or a quinone as cofactor and their role as antimicrobial proteins in marine bacteria. Mar. Drugs, 2015, 13, 7403–7418.
- Pawelek, P. D., Cheah, J., Coulombe, R., Macheroux, P., Ghisla, S. and Vrielink, A., The structure of L-amino acid oxidase reveals the substrate trajectory into an enantiomerically conserved active site. EMBO J., 2000, 19, 4204–4215.
- Leese, C., Fotheringham, I., Escalettes, F., Speight, R. and Grogan, G., Cloning, expression, characterization and mutational analysis of L-aspartate oxidase from Pseudomonas putida. J. Mol. Catal. B-Enzym., 2013, 85–86, 17–22.
- Liu, L., Hossain, G. S., Shin, H. D., Li, J., Du, G. and Chen, J., One-step production of alpha- ketoglutaric acid from glutamic acid with an engineered L-amino acid deaminase from Proteus mirabilis. J. Biotechnol., 2013, 164, 97–104.
- Geueke, B. and Hummel, W., A new bacterial L-amino acid oxidase with a broad substrate specificity: purification and characterization. Enzyme Microb. Technol., 2002, 31, 77–87.
- Eshghi, A., Pappalardo, E., Hester, S., Thomas, B., Pretre, G. and Picardeau, M., Pathogenic Leptospira interrogans exoproteins are primarily involved in heterotrophic processes. Infect. Immunol., 2015, 83, 3061–3073.
- Fouts, D. E. et al., What makes a bacterial species pathogenic? Comparative genomic analysis of the genus Leptospira. PLoS Negl. Trop. Dis., 2016, 10, e0004403.
- Altschul, S. F., Madden, T. L., Schaffer, A. A., Zhang, J., Zhang, Z., Miller, W. and Lipman, D. J., Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res., 1997, 25, 3389–3402.
- Finn, R. D. et al., Pfam: the protein families database. Nucleic Acids Res., 2014, 42, D222–D230.
- Marchler-Bauer, A. et al., CDD: NCBI’s conserved domain database. Nucleic Acids Res., 2015, 43, D222–D226.
- Boratyn, G. M. et al., BLAST: a more efficient report with usability improvements. Nucleic Acids Res., 2013, 41, W29–W33.
- Shevchenko, A., Tomas, H., Havlis, J., Olsen, J. V. and Mann, M., In-gel digestion for mass spectrometric characterization of proteins and proteomes. Nature Protoc., 2006, 1, 2856–2860.
- Winn, M. D. et al., Overview of the CCP4 suite and current developments. Acta Crystallogr. D, Biol. Crystallogr., 2011, 67, 235–242.
- Winter, G., xia2: An expert system for macromolecular crystallography data reduction. J. Appl. Crystallogr., 2010, 43, 186–190.
- Winter, G. et al., DIALS: implementation and evaluation of a new integration package. Acta Crystallogr. D, Struct. Biol., 2018, 74, 85–97.
- Evans, P., Scaling and assessment of data quality. Acta Crystallogr. D, Biol. Crystallogr., 2006, 62, 72–82.
- Evans, P. R. and Murshudov, G. N., How good are my data and what is the resolution? Acta Crystallogr. D, Biol. Crystallogr., 2013, 69, 1204–1214.
- Evans, P. R., An introduction to data reduction: space-group determination, scaling and intensity statistics. Acta Crystallogr. D, Biol. Crystallogr., 2011, 67, 282–292.
- Panjikar, S., Parthasarathy, V., Lamzin, V. S., Weiss, M. S. and Tucker, P. A., Auto-rickshaw: an automated crystal structure determination platform as an efficient tool for the validation of an X-ray diffraction experiment. Acta Crystallogr. D, Biol. Crystallogr., 2005, 61, 449–457.
- Panjikar, S., Parthasarathy, V., Lamzin, V. S., Weiss, M. S. and Tucker, P. A., On the combination of molecular replacement and single-wavelength anomalous diffraction phasing for automated structure determination. Acta Crystallogr. D, Biol. Crystallogr., 2009, 65, 1089–1097.
- Hatti, K., Biswas, A., Chaudhary, S., Dadireddy, V., Sekar, K., Srinivasan, N. and Murthy, M. R. N., Structure determination of contaminant proteins using the MarathonMR procedure. J. Struct. Biol., 2017, 197, 372–378.
- Skubak, P. and Pannu, N. S., Automatic protein structure solution from weak X-ray data. Natrue Commun., 2013, 4, 2777.
- Sheldrick, G. M., A short history of SHELX. Acta Crystallogr. A, 2008, 64, 112–122.
- Schneider, T. R. and Sheldrick, G. M., Substructure solution with SHELXD. Acta Crystallogr. D, Biol. Crystallogr., 2002, 58, 1772–1779.
- Murshudov, G. N. et al., REFMAC5 for the refinement of macromolecular crystal structures. Acta Crystallogr. D, Biol. Crystallogr., 2011, 67, 355–367.
- Abrahams, J. P. and Leslie, A. G., Methods used in the structure determination of bovine mitochondrial F1 ATPase. Acta Crystallogr. D, Biol. Crystallogr., 1996, 52, 30–42.
- Skubak, P., Waterreus, W. J. and Pannu, N. S., Multivariate phase combination improves automated crystallographic model building. Acta Crystallogr. D, Biol. Crystallogr., 2010, 66, 783–788.
- Cowtan, K., Recent developments in classical density modification. Acta Crystallogr. D, Biol. Crystallogr., 2010, 66, 470–478.
- Cowtan, K., The Buccaneer software for automated model building. 1. Tracing protein chains. Acta Crystallogr. D, Biol. Crystallogr., 2006, 62, 1002–1011.
- Emsley, P., Lohkamp, B., Scott, W. G. and Cowtan, K., Features and development of Coot. Acta Crystallogr. D, Biol. Crystallogr., 2010, 66, 486–501.
- Kovalevskiy, O., Nicholls, R. A., Long, F., Carlon, A. and Murshudov, G. N., Overview of refinement procedures within REFMAC5: utilizing data from different sources. Acta Crystallogr. D, Struct. Biol., 2018, 74, 215–227.
- Murshudov, G. N., Vagin, A. A. and Dodson, E. J., Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallogr. D, Biol. Crystallogr., 1997, 53, 240–255.
- Murshudov, G. N., Vagin, A. A., Lebedev, A., Wilson, K. S. and Dodson, E. J., Efficient anisotropic refinement of macromolecular structures using FFT. Acta Crystallogr. D, Biol. Crystallogr., 1999, 55, 247–255.
- Nicholls, R. A., Long, F. and Murshudov, G. N., Low-resolution refinement tools in REFMAC5. Acta Crystallogr. D, Biol. Crystallogr., 2012, 68, 404–417.
- Vagin, A. A., Steiner, R. A., Lebedev, A. A., Potterton, L., McNicholas, S., Long, F. and Murshudov, G. N., REFMAC5 dictionary: organization of prior chemical knowledge and guidelines for its use. Acta Crystallogr. D, Biol. Crystallogr., 2004, 60, 2184–2195.
- Winn, M. D., Murshudov, G. N. and Papiz, M. Z., Macromolecular TLS refinement in REFMAC at moderate resolutions. Methods Enzymol., 2003, 374, 300–321.
- Vagin, A. and Teplyakov, A., Molecular replacement with MOLREP. Acta Crystallogr. D, Biol. Crystallogr., 2010, 66, 22–25.
- Lebedev, A. A., Vagin, A. A. and Murshudov, G. N., Model preparation in MOLREP and examples of model improvement using X-ray data. Acta Crystallogr. D, Biol. Crystallogr., 2008, 64, 33–39.
- Krissinel, E. and Henrick, K., Inference of macromolecular assemblies from crystalline state. J. Mol. Biol., 2007, 372, 774–797.
- Krissinel, E., Crystal contacts as nature’s docking solutions. J. Comput. Chem., 2010, 31, 133–143.
- Krissinel, E., Enhanced fold recognition using efficient short fragment clustering. J. Mol. Biochem., 2012, 1, 76–85.
- Holm, L. and Sander, C., Dali: a network tool for protein structure comparison. Trends Biochem. Sci., 1995, 20, 478–480.
- Holm, L. and Sander, C., Mapping the protein universe. Science, 1996, 273, 595–603.
- Holm, L., DALI and the persistence of protein shape. Protein Sci., 2020, 29, 128–140.
- Hasegawa, H. and Holm, L., Advances and pitfalls of protein structural alignment. Curr. Opin. Struct. Biol., 2009, 19, 341–348.
- Kishimoto, M. and Takahashi, T., A spectrophotometric microplate assay for L-amino acid oxidase. Anal. Biochem., 2001, 298, 136–139.
- Holt, A. and Palcic, M. M., A peroxidase-coupled continuous absorbance plate-reader assay for flavin monoamine oxidases, copper-containing amine oxidases and related enzymes. Nature Protoc., 2006, 1, 2498–2505.
- Schwinn, K., Ferre, N. and Huix-Rotllant, M., UV–visible absorption spectrum of FAD and its reduced forms embedded in a crypto-chrome protein. Phys. Chem. Chem. Phys., 2020, 22, 12447–12455.
- Fitzpatrick, P. F., Carbanion versus hydride transfer mechanisms in flavoprotein-catalyzed dehydrogenations. Bioorg. Chem., 2004, 32, 125–139.
- Mathews, F. S., New flavoenzymes. Curr. Opin. Struc. Biol., 1991, 1, 954–967.
- Dym, O. and Eisenberg, D., Sequence–structure analysis of FAD-containing proteins. Protein Sci., 2001, 10, 1712–1728.
- Stourac, J. et al., Caver Web 1.0: identification of tunnels and channels in proteins and analysis of ligand transport. Nucleic Acids Res., 2019, 47, W414–W422.
- Faust, A., Niefind, K., Hummel, W. and Schomburg, D., The structure of a bacterial L-amino acid oxidase from Rhodococcus opacus gives new evidence for the hydride mechanism for dehydrogenation. J. Mol. Biol., 2007, 367, 234–248.
- Georgieva, D., Murakami, M., Perband, M., Arni, R. and Betzel, C., The structure of a native L-amino acid oxidase, the major component of the Vipera ammodytes ammodytes venomic, reveals dynamic active site and quaternary structure stabilization by divalent ions. Mol. Biosyst., 2011, 7, 379–384.
- Moustafa, I. M., Foster, S., Lyubimov, A. Y. and Vrielink, A., Crystal structure of LAAO from Calloselasma rhodostoma with an L-phenylalanine substrate: insights into structure and mechanism. J. Mol. Biol., 2006, 364, 991–1002.
- Ullah, A., Structure–function studies and mechanism of action of snake venom L-amino acid oxidases. Front Pharmacol., 2020, 11, 110.
- Ramasarma, T. and Vaigundan, D., Pathways of electron transfer and proton translocation in the action of superoxide dismutase dimer. Biochem. Biophys. Res. Commun., 2019, 514, 772–776.
Abstract Views: 398
PDF Views: 168