Open Access Open Access  Restricted Access Subscription Access

Structural characterization of a putative recombinant l-amino acid oxidase from Leptospira interrogans


Affiliations
1 Genomics and Central Research Laboratory, Department of Cell Biology and Molecular Genetics, Sri Devaraj Urs Academy of Higher Education and Research, Tamaka, Kolar 563 101, India, India
2 Computational Data Sciences, Indian Institute of Science, Bengaluru 560 012, India; Present address: National Institute for Plant Biotechnology, Indian Council of Agricultural Research, New Delhi 110 012, India, India
3 Molecular Biophysics Unit, Indian Institute of Science, Bengaluru 560 012, India, India
4 Computational Data Sciences, Indian Institute of Science, Bengaluru 560 012, India, India
5 Molecular Biophysics Unit, Indian Institute of Science, Bengaluru 560 012, India; Institute of Bioinformatics and Applied Biotechnology, Bengaluru 560 100, India, India
6 Genomics and Central Research Laboratory, Department of Cell Biology and Molecular Genetics, Sri Devaraj Urs Academy of Higher Education and Research, Tamaka, Kolar 563 101, India; Centre for Nanoscience and Engineering, Indian Institute of Science, Bengaluru 560 012, India, India
 

Amino acid oxidases (AOs) are flavin adenine dinucleotide (FAD)-dependent dimeric enzymes that stereo specifically catalyse the deamination of an a-amino acid leading to an a-keto acid. Putative Leptospira interrogans recombinant l-amino acid oxidase (Li-rLAO; lacking 20 residues corresponding to the N-terminal signal sequence) was cloned, expressed, purified, and its three-dimensional structure was determined by X-ray crystallography at a resolution of 1.8 Å. The active site could be easily identified by the presence of electron density corresponding to a non-covalently bound FAD in both protomers of the dimeric enzyme. Structural analysis of Li-rLAO revealed that its polypeptide fold is similar to those of the previously determined homologous structures as available in the Protein Data Bank. However, a substrate-binding residue found at the active site of other previously determined homologous structures was not conserved in Li-rLAO, suggesting that its specificity may differ from those of earlier reported structures. Not surprisingly, Li-rLAO showed no activity for most amino acids and amines; it exhibited a low activity only with l-arginine as the substrate. The catalytic properties of Li-rLAO could be rationalized in terms of its three-dimensional structure
User
Notifications
Font Size

  • Kobayashi, Y., Discovery of the causative organism of Weil’s disease: historical view. J. Infect. Chemother., 2001, 7, 10–15.
  • Haake, D. A., Spirochaetal lipoproteins and pathogenesis. Microbiology, 2000, 146(Pt 7), 1491–1504.
  • Cullen, P. A., Haake, D. A. and Adler, B., Outer membrane proteins of pathogenic spirochetes. FEMS Microbiol. Rev., 2004, 28, 291–318.
  • Trueba, G. A., Bolin, C. A. and Zuerner, R. L., Characterization of the periplasmic flagellum proteins of Leptospira interrogans. J. Bacteriol., 1992, 174, 4761–4768.
  • Levett, P. N., Leptospirosis. Clin. Microbiol. Rev., 2001, 14, 296–326.
  • Adler, B. and de la Pena Moctezuma, A., Leptospira and leptospirosis. Vet. Microbiol., 2010, 140, 287–296.
  • Marshall, R. B., The route of entry of leptospires into the kidney tubule. J. Med. Microbiol., 1976, 9, 149–152.
  • Morrison, W. I. and Wright, N. G., Canine leptospirosis: an immunopathological study of interstitial nephritis due to Leptospira canicola. J. Pathol., 1976, 120, 83–89.
  • Ballard, S. A., Williamson, M., Adler, B., Vinh, T. and Faine, S., Interactions of virulent and avirulent leptospires with primary cultures of renal epithelial cells. J. Med. Microbiol., 1986, 21, 59–67.
  • Yang, C. W., Wu, M. S. and Pan, M. J., Leptospirosis renal disease. Nephrol. Dial. Transplant., 2001, 16(Suppl 5), 73–77.
  • Silbernagl, S., Kinetics and localization of tubular resorption of acidic amino-acids – a microperfusion and free-flow micropuncture study in rat-kidney. Pflug. Arch. Eur. J. Physiol., 1983, 396, 218–224.
  • Silbernagl, S. and Volkl, H., Molecular specificity of the tubular resorption of acidic amino-acids – a continuous microperfusion study in rat–kidney in vivo. Pflug. Arch. Eur. J. Physiol., 1983, 396, 225–230.
  • Brosnan, J. T., The 1986 Borden award lecture. The role of the kidney in amino acid metabolism and nutrition. Can. J. Physiol. Pharmacol., 1987, 65, 2355–2362.
  • Silbernagl, S., The renal handling of amino acids and oligopeptides. Physiol. Rev., 1988, 68, 911–1007.
  • Dantzler, W. H. and Silbernagl, S., Amino-acid transport by juxtamedullary nephrons – distal reabsorption and recycling. Am. J. Physiol., 1988, 255, F397–F407.
  • Nakanishi, T., Shimizu, A., Saiki, K., Fujiwara, F., Funahashi, S. and Hayashi, A., Quantitative analysis of urinary pyroglutamic acid in patients with hyperammonemia. Clin. Chim. Acta, 1991, 197, 249–255.
  • van de Poll, M. C., Soeters, P. B., Deutz, N. E., Fearon, K. C. and Dejong, C. H., Renal metabolism of amino acids: its role in inter-organ amino acid exchange. Am. J. Clin. Nutr., 2004, 79, 185–197.
  • Hossain, G. S., Li, J. H., Shin, H. D., Du, G. C., Liu, L. and Chen, J., L-Amino acid oxidases from microbial sources: types, properties, functions, and applications. Appl. Microbiol. Biotechnol., 2014, 98, 1507–1515.
  • Sacchi, S., Caldinelli, L., Cappelletti, P., Pollegioni, L. and Molla, G., Structure–function relationships in human D-amino acid oxidase. Amino Acids, 2012, 43, 1833–1850.
  • Pollegioni, L., Sacchi, S. and Murtas, G., Human D-amino acid oxidase: structure, function, and regulation. Front. Mol. Biosci., 2018, 5, 107.
  • Hughes, A. L., Origin and diversification of the L-amino oxidase family in innate immune defenses of animals. Immunogenetics, 2010, 62, 753–759.
  • Kasai, K., Ishikawa, T., Nakamura, T. and Miura, T., Antibacterial properties of L-amino acid oxidase: mechanisms of action and perspectives for therapeutic applications. Appl. Microbiol. Biotechnol., 2015, 99, 7847–7857.
  • Du, X. Y. and Clemetson, K. J., Snake venom L-amino acid oxidases. Toxicon, 2002, 40, 659–665.
  • Izidoro, L. F. et al., Snake venom L-amino acid oxidases: trends in pharmacology and biochemistry. Biomed Res Int., 2014, 2014, 196754.
  • Campillo-Brocal, J. C., Lucas-Elio, P. and Sanchez-Amat, A., Distribution in different organisms of amino acid oxidases with FAD or a quinone as cofactor and their role as antimicrobial proteins in marine bacteria. Mar. Drugs, 2015, 13, 7403–7418.
  • Pawelek, P. D., Cheah, J., Coulombe, R., Macheroux, P., Ghisla, S. and Vrielink, A., The structure of L-amino acid oxidase reveals the substrate trajectory into an enantiomerically conserved active site. EMBO J., 2000, 19, 4204–4215.
  • Leese, C., Fotheringham, I., Escalettes, F., Speight, R. and Grogan, G., Cloning, expression, characterization and mutational analysis of L-aspartate oxidase from Pseudomonas putida. J. Mol. Catal. B-Enzym., 2013, 85–86, 17–22.
  • Liu, L., Hossain, G. S., Shin, H. D., Li, J., Du, G. and Chen, J., One-step production of alpha- ketoglutaric acid from glutamic acid with an engineered L-amino acid deaminase from Proteus mirabilis. J. Biotechnol., 2013, 164, 97–104.
  • Geueke, B. and Hummel, W., A new bacterial L-amino acid oxidase with a broad substrate specificity: purification and characterization. Enzyme Microb. Technol., 2002, 31, 77–87.
  • Eshghi, A., Pappalardo, E., Hester, S., Thomas, B., Pretre, G. and Picardeau, M., Pathogenic Leptospira interrogans exoproteins are primarily involved in heterotrophic processes. Infect. Immunol., 2015, 83, 3061–3073.
  • Fouts, D. E. et al., What makes a bacterial species pathogenic? Comparative genomic analysis of the genus Leptospira. PLoS Negl. Trop. Dis., 2016, 10, e0004403.
  • Altschul, S. F., Madden, T. L., Schaffer, A. A., Zhang, J., Zhang, Z., Miller, W. and Lipman, D. J., Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res., 1997, 25, 3389–3402.
  • Finn, R. D. et al., Pfam: the protein families database. Nucleic Acids Res., 2014, 42, D222–D230.
  • Marchler-Bauer, A. et al., CDD: NCBI’s conserved domain database. Nucleic Acids Res., 2015, 43, D222–D226.
  • Boratyn, G. M. et al., BLAST: a more efficient report with usability improvements. Nucleic Acids Res., 2013, 41, W29–W33.
  • Shevchenko, A., Tomas, H., Havlis, J., Olsen, J. V. and Mann, M., In-gel digestion for mass spectrometric characterization of proteins and proteomes. Nature Protoc., 2006, 1, 2856–2860.
  • Winn, M. D. et al., Overview of the CCP4 suite and current developments. Acta Crystallogr. D, Biol. Crystallogr., 2011, 67, 235–242.
  • Winter, G., xia2: An expert system for macromolecular crystallography data reduction. J. Appl. Crystallogr., 2010, 43, 186–190.
  • Winter, G. et al., DIALS: implementation and evaluation of a new integration package. Acta Crystallogr. D, Struct. Biol., 2018, 74, 85–97.
  • Evans, P., Scaling and assessment of data quality. Acta Crystallogr. D, Biol. Crystallogr., 2006, 62, 72–82.
  • Evans, P. R. and Murshudov, G. N., How good are my data and what is the resolution? Acta Crystallogr. D, Biol. Crystallogr., 2013, 69, 1204–1214.
  • Evans, P. R., An introduction to data reduction: space-group determination, scaling and intensity statistics. Acta Crystallogr. D, Biol. Crystallogr., 2011, 67, 282–292.
  • Panjikar, S., Parthasarathy, V., Lamzin, V. S., Weiss, M. S. and Tucker, P. A., Auto-rickshaw: an automated crystal structure determination platform as an efficient tool for the validation of an X-ray diffraction experiment. Acta Crystallogr. D, Biol. Crystallogr., 2005, 61, 449–457.
  • Panjikar, S., Parthasarathy, V., Lamzin, V. S., Weiss, M. S. and Tucker, P. A., On the combination of molecular replacement and single-wavelength anomalous diffraction phasing for automated structure determination. Acta Crystallogr. D, Biol. Crystallogr., 2009, 65, 1089–1097.
  • Hatti, K., Biswas, A., Chaudhary, S., Dadireddy, V., Sekar, K., Srinivasan, N. and Murthy, M. R. N., Structure determination of contaminant proteins using the MarathonMR procedure. J. Struct. Biol., 2017, 197, 372–378.
  • Skubak, P. and Pannu, N. S., Automatic protein structure solution from weak X-ray data. Natrue Commun., 2013, 4, 2777.
  • Sheldrick, G. M., A short history of SHELX. Acta Crystallogr. A, 2008, 64, 112–122.
  • Schneider, T. R. and Sheldrick, G. M., Substructure solution with SHELXD. Acta Crystallogr. D, Biol. Crystallogr., 2002, 58, 1772–1779.
  • Murshudov, G. N. et al., REFMAC5 for the refinement of macromolecular crystal structures. Acta Crystallogr. D, Biol. Crystallogr., 2011, 67, 355–367.
  • Abrahams, J. P. and Leslie, A. G., Methods used in the structure determination of bovine mitochondrial F1 ATPase. Acta Crystallogr. D, Biol. Crystallogr., 1996, 52, 30–42.
  • Skubak, P., Waterreus, W. J. and Pannu, N. S., Multivariate phase combination improves automated crystallographic model building. Acta Crystallogr. D, Biol. Crystallogr., 2010, 66, 783–788.
  • Cowtan, K., Recent developments in classical density modification. Acta Crystallogr. D, Biol. Crystallogr., 2010, 66, 470–478.
  • Cowtan, K., The Buccaneer software for automated model building. 1. Tracing protein chains. Acta Crystallogr. D, Biol. Crystallogr., 2006, 62, 1002–1011.
  • Emsley, P., Lohkamp, B., Scott, W. G. and Cowtan, K., Features and development of Coot. Acta Crystallogr. D, Biol. Crystallogr., 2010, 66, 486–501.
  • Kovalevskiy, O., Nicholls, R. A., Long, F., Carlon, A. and Murshudov, G. N., Overview of refinement procedures within REFMAC5: utilizing data from different sources. Acta Crystallogr. D, Struct. Biol., 2018, 74, 215–227.
  • Murshudov, G. N., Vagin, A. A. and Dodson, E. J., Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallogr. D, Biol. Crystallogr., 1997, 53, 240–255.
  • Murshudov, G. N., Vagin, A. A., Lebedev, A., Wilson, K. S. and Dodson, E. J., Efficient anisotropic refinement of macromolecular structures using FFT. Acta Crystallogr. D, Biol. Crystallogr., 1999, 55, 247–255.
  • Nicholls, R. A., Long, F. and Murshudov, G. N., Low-resolution refinement tools in REFMAC5. Acta Crystallogr. D, Biol. Crystallogr., 2012, 68, 404–417.
  • Vagin, A. A., Steiner, R. A., Lebedev, A. A., Potterton, L., McNicholas, S., Long, F. and Murshudov, G. N., REFMAC5 dictionary: organization of prior chemical knowledge and guidelines for its use. Acta Crystallogr. D, Biol. Crystallogr., 2004, 60, 2184–2195.
  • Winn, M. D., Murshudov, G. N. and Papiz, M. Z., Macromolecular TLS refinement in REFMAC at moderate resolutions. Methods Enzymol., 2003, 374, 300–321.
  • Vagin, A. and Teplyakov, A., Molecular replacement with MOLREP. Acta Crystallogr. D, Biol. Crystallogr., 2010, 66, 22–25.
  • Lebedev, A. A., Vagin, A. A. and Murshudov, G. N., Model preparation in MOLREP and examples of model improvement using X-ray data. Acta Crystallogr. D, Biol. Crystallogr., 2008, 64, 33–39.
  • Krissinel, E. and Henrick, K., Inference of macromolecular assemblies from crystalline state. J. Mol. Biol., 2007, 372, 774–797.
  • Krissinel, E., Crystal contacts as nature’s docking solutions. J. Comput. Chem., 2010, 31, 133–143.
  • Krissinel, E., Enhanced fold recognition using efficient short fragment clustering. J. Mol. Biochem., 2012, 1, 76–85.
  • Holm, L. and Sander, C., Dali: a network tool for protein structure comparison. Trends Biochem. Sci., 1995, 20, 478–480.
  • Holm, L. and Sander, C., Mapping the protein universe. Science, 1996, 273, 595–603.
  • Holm, L., DALI and the persistence of protein shape. Protein Sci., 2020, 29, 128–140.
  • Hasegawa, H. and Holm, L., Advances and pitfalls of protein structural alignment. Curr. Opin. Struct. Biol., 2009, 19, 341–348.
  • Kishimoto, M. and Takahashi, T., A spectrophotometric microplate assay for L-amino acid oxidase. Anal. Biochem., 2001, 298, 136–139.
  • Holt, A. and Palcic, M. M., A peroxidase-coupled continuous absorbance plate-reader assay for flavin monoamine oxidases, copper-containing amine oxidases and related enzymes. Nature Protoc., 2006, 1, 2498–2505.
  • Schwinn, K., Ferre, N. and Huix-Rotllant, M., UV–visible absorption spectrum of FAD and its reduced forms embedded in a crypto-chrome protein. Phys. Chem. Chem. Phys., 2020, 22, 12447–12455.
  • Fitzpatrick, P. F., Carbanion versus hydride transfer mechanisms in flavoprotein-catalyzed dehydrogenations. Bioorg. Chem., 2004, 32, 125–139.
  • Mathews, F. S., New flavoenzymes. Curr. Opin. Struc. Biol., 1991, 1, 954–967.
  • Dym, O. and Eisenberg, D., Sequence–structure analysis of FAD-containing proteins. Protein Sci., 2001, 10, 1712–1728.
  • Stourac, J. et al., Caver Web 1.0: identification of tunnels and channels in proteins and analysis of ligand transport. Nucleic Acids Res., 2019, 47, W414–W422.
  • Faust, A., Niefind, K., Hummel, W. and Schomburg, D., The structure of a bacterial L-amino acid oxidase from Rhodococcus opacus gives new evidence for the hydride mechanism for dehydrogenation. J. Mol. Biol., 2007, 367, 234–248.
  • Georgieva, D., Murakami, M., Perband, M., Arni, R. and Betzel, C., The structure of a native L-amino acid oxidase, the major component of the Vipera ammodytes ammodytes venomic, reveals dynamic active site and quaternary structure stabilization by divalent ions. Mol. Biosyst., 2011, 7, 379–384.
  • Moustafa, I. M., Foster, S., Lyubimov, A. Y. and Vrielink, A., Crystal structure of LAAO from Calloselasma rhodostoma with an L-phenylalanine substrate: insights into structure and mechanism. J. Mol. Biol., 2006, 364, 991–1002.
  • Ullah, A., Structure–function studies and mechanism of action of snake venom L-amino acid oxidases. Front Pharmacol., 2020, 11, 110.
  • Ramasarma, T. and Vaigundan, D., Pathways of electron transfer and proton translocation in the action of superoxide dismutase dimer. Biochem. Biophys. Res. Commun., 2019, 514, 772–776.

Abstract Views: 398

PDF Views: 168




  • Structural characterization of a putative recombinant l-amino acid oxidase from Leptospira interrogans

Abstract Views: 398  |  PDF Views: 168

Authors

D. Vaigundan
Genomics and Central Research Laboratory, Department of Cell Biology and Molecular Genetics, Sri Devaraj Urs Academy of Higher Education and Research, Tamaka, Kolar 563 101, India, India
I. Yuvaraj
Computational Data Sciences, Indian Institute of Science, Bengaluru 560 012, India; Present address: National Institute for Plant Biotechnology, Indian Council of Agricultural Research, New Delhi 110 012, India, India
P. Sunita
Molecular Biophysics Unit, Indian Institute of Science, Bengaluru 560 012, India, India
K. Sekar
Computational Data Sciences, Indian Institute of Science, Bengaluru 560 012, India, India
M. R. N. Murthy
Molecular Biophysics Unit, Indian Institute of Science, Bengaluru 560 012, India; Institute of Bioinformatics and Applied Biotechnology, Bengaluru 560 100, India, India
P. R. Krishnaswamy
Genomics and Central Research Laboratory, Department of Cell Biology and Molecular Genetics, Sri Devaraj Urs Academy of Higher Education and Research, Tamaka, Kolar 563 101, India; Centre for Nanoscience and Engineering, Indian Institute of Science, Bengaluru 560 012, India, India

Abstract


Amino acid oxidases (AOs) are flavin adenine dinucleotide (FAD)-dependent dimeric enzymes that stereo specifically catalyse the deamination of an a-amino acid leading to an a-keto acid. Putative Leptospira interrogans recombinant l-amino acid oxidase (Li-rLAO; lacking 20 residues corresponding to the N-terminal signal sequence) was cloned, expressed, purified, and its three-dimensional structure was determined by X-ray crystallography at a resolution of 1.8 Å. The active site could be easily identified by the presence of electron density corresponding to a non-covalently bound FAD in both protomers of the dimeric enzyme. Structural analysis of Li-rLAO revealed that its polypeptide fold is similar to those of the previously determined homologous structures as available in the Protein Data Bank. However, a substrate-binding residue found at the active site of other previously determined homologous structures was not conserved in Li-rLAO, suggesting that its specificity may differ from those of earlier reported structures. Not surprisingly, Li-rLAO showed no activity for most amino acids and amines; it exhibited a low activity only with l-arginine as the substrate. The catalytic properties of Li-rLAO could be rationalized in terms of its three-dimensional structure

References





DOI: https://doi.org/10.18520/cs%2Fv123%2Fi7%2F895-906