Open Access Open Access  Restricted Access Subscription Access

Salt-pan bacteria as potential plant growth promoters and their antagonistic activity to fungal pathogens of Capsicum annuum L.


Affiliations
1 School of Biological Sciences and Biotechnology, Goa University, Goa 403 206, India, India
2 Department of Arctic Operations, National Centre for Polar and Ocean Research, Goa 403 804, India, India
 

Chilli, an essential condiment worldwide, is generally cultivated in paddy fields and can be infected by fungal pathogens, thus hampering its yield. Due to increasing soil salinization, the efficacy of many biocontrol agents is poor in the fields. In this study, bacteria (about 196) isolated from the Goan salt pans in India were screened for their antifungal activity against Fusarium oxys­porum, Fusarium pallidoroseum, Rhizoctonia solani and Pythium aphanidermatum. Halotolerant isolates of Bacillus tequilensis, Bacillus subtilis subsp. inaquosorum, Bacillus cabrialesii, Bacillus licheniformis, Bacillus paralicheniformis and Brevibacterium antiquum could grow under a wide range of pH, temperature and NaCl concentrations, and also displayed plant growth-promoting attributes

Keywords

Antagonistic activity, chilli, fungal pathogens, plant growth promotion, salt-pan bacteria.
User
Notifications
Font Size

  • FAO, FAOSTAT 2020. Food and Agriculture Organization, Rome, Italy, retrieved from https://www.fao.org/faostat/en/#data/QCL/vis-ualize
  • Baenas, N., Belović, M., Ilic, N., Moreno, D. A. and García-Viguera, C., Industrial use of pepper (Capsicum annum L.) derived products: technological benefits and biological advantages. Food Chem., 2019, 274, 872–885; https://doi.org/10.1016/j.foodchem.2018.09. 047.
  • Pawaskar, M. and Kerkar, S., Microbial biocontrol agents against chilli plant pathogens over synthetic pesticides: a review. Proc. In-dian Natl. Sci. Acad., 2021, 87, 578–594; https://doi.org/10.1007/ s43538-021-00053-2.
  • Arora, H., Sharma, A., Sharma, S., Haron, F. F., Gafur, A., Sayyed, R. Z. and Datta, R., Pythium damping-off and root rot of Capsicum annuum L.: impacts, diagnosis, and management. Microorganisms, 2021, 9, 823; https://doi.org/10.3390/microorganisms9040823.
  • Bashir, M. R., Atiq, M., Sajid, M., Mohsan, M., Abbas, W., Alam, M. W. and Bashair, M., Antifungal exploitation of fungicides against Fusarium oxysporum f. sp. capsici causing Fusarium wilt of chilli pepper in Pakistan. Environ. Sci. Pollut. Res., 2018, 25, 6797–6801; https://doi.org/10.1007/s11356-017-1032-9.
  • Rini, C. R. and Sulochana, K. K., Management of seedling rot of chilli (Capsicum annuum L.) using Trichoderma spp. and fluores-cent pseudomonads (Pseudomonas fluorescens). J. Trop. Agric., 2007, 44, 79–82; http://jtropag.kau.in/index.php/ojs2/article/view/ 159/159.
  • Lugtenberg, B. and Kamilova, F., Plant-growth-promoting rhizo-bacteria. Annu. Rev. Microbiol., 2009, 63, 541–556; https://doi.org/ 10.1146/annurev.micro.62.081307.162918.
  • Daliakopoulos, I. N., Tsanis, I. K., Koutroulis, A., Kourgialas, N. N., Varouchakis, A. E., Karatzas, G. P. and Ritsema, C. J., The threat of soil salinity: a European scale review. Sci. Total Environ., 2016, 573, 727–739; https://doi.org/10.1016/j.scitotenv.2016.08.177.
  • Gupta, B. and Huang, B., Mechanism of salinity tolerance in plants: physiological, biochemical, and molecular characterization. Int. J. Genomics, 2014, 2014, 1–18; https://doi.org/10.1155/2014/701596.
  • Waditee-Sirisattha, R., Kageyama, H. and Takabe, T., Halophilic microorganism resources and their applications in industrial and environmental biotechnology. AIMS Microbiol., 2016, 2, 42–54.
  • Kamat, T. and Kerkar, S., Bacteria from salt pans: a potential re-source of antibacterial metabolites. Rec. Res. Sci. Technol., 2011, 3, 46–52; http://irgu.unigoa.ac.in/drs/bitstream/handle/unigoa/2521/ RecentRes_Sci_Technol_3_46.pdf?sequence=1&isAllowed=y
  • Karimi, E., Safaie, N., Shams-Baksh, M. and Mahmoudi, B., Bacil-lus amyloliquefaciens SB14 from rhizosphere alleviates Rhizocto-nia damping-off disease on sugar beet. Microbiol. Res., 2016, 192, 221–230; https://doi.org/10.1016/j.micres.2016.06.011 .
  • Sahu, P. K. et al., Endophytic bacilli from medicinal -aromatic per-ennial Holy basil (Ocimum tenuiflorum L.) modulate plant growth promotion and induced systemic resistance against Rhizoctonia solani in rice (Oryza sativa L.). Biol. Control, 2020, 150, 104353; https://doi.org/10.1016/j.biocontrol.2020.104353 .
  • Shet, S. A. and Garg, S., Plant growth promotion of Vigna unguicu-lata in arid sandy soil using bacterial species from coastal sand dune. Agric. Res., 2022, 11, 1–12; https://doi.org/10.1007/s40003-022-00613-y.
  • Karimi, E., Sadeghi, A., Abbaszadeh Dahaji, P., Dalvand, Y., Omidvari, M. and Kakuei Nezhad, M., Biocontrol activity of salt tolerant Streptomyces isolates against phytopathogens causing root rot of sugar beet. Biocontrol. Sci. Technol., 2012, 22, 333–349; https://doi.org/10.1080/09583157.2012.658552.
  • Kayasth, M., Gera, R., Dudeja, S. S., Sharma, P. K. and Kumar, V., Studies on salinization in Haryana soils on free‐living nitrogen‐ fixing bacterial populations and their activity. J. Basic Microbiol., 2014, 54, 170–179; https://doi.org/10.1002/jobm.201200158.
  • Pirhadi, M., Enayatizamir, N., Motamedi, H. and Sorkheh, K., Screening of salt tolerant sugarcane endophytic bacteria with potas-sium and zinc for their solubilizing and antifungal activity. Biosci. Biotechnol. Res. Commun., 2016, 9, 530–538; https://www. researchgate.net/profile/Naeimeh -Enayatizamir/publication/3337-12846_Screening_of_salt_tolerant_sugarcane_endophytic_bacteria_ with_potassium_and_zinc_for_their_solubilizing_and_antifungal_act-ivity/links/5d0b9f6ba6fdcc11782233a2/Screening-of-salt-tolerant-sugarcane-endophytic-bacteria-with-potassium-and-zinc-for-their-solubilizing-and-antifungal-activity.pdf
  • Chandrakala, C., Voleti, S. R., Bandeppa, S., Kumar, N. S. and Latha, P. C., Silicate solubilization and plant growth promoting po-tential of Rhizobium sp. isolated from rice rhizosphere. Silicon, 2019, 11, 2895–2906; https://doi.org/10.1007/s12633-019-0079-2.
  • Fernandes, S., Kerkar, S., Leitao, J. and Mishra, A., Probiotic role of salt pan bacteria in enhancing the growth of whiteleg shrimp, Li-topenaeus vannamei. Probiot. Antimicrob. Protein., 2019, 11, 1309–1323; https://doi.org/10.1007/s12602-018-9503-y.
  • Performance standards for antimicrobial susceptibility testing. CLSI supplement M100. Clinical and Laboratory Standards Insti-tute, 2017.
  • Kim, M. J. et al., Safety evaluations of Bifidobacterium bifidum BGN4 and Bifidobacterium longum BORI. Int. J. Mol. Sci., 2018, 19, 1422; https://doi.org/10.3390/ijms19051422.
  • Bhattacharya, A. et al., Intervention of bio-protective endophyte Bacillus tequilensis enhance physiological strength of tomato dur-ing Fusarium wilt infection. Biol. Control, 2019, 139, 104074; https://doi.org/10.1016/j.biocontrol.2019.104074 .
  • Zhou, H., Zhu, H., Ren, Z., Li, X., Zhong, J. and Liu, E., Efficacy of Bacillus tequilensis strain JN-369 to biocontrol of rice blast and enhance rice growth. Biol. Control, 2021, 160, 104652; https://doi. org/10.1016/j.biocontrol.2021.104652.
  • Paul, N. C., Ji, S. H., Deng, J. X. and Yu, S. H., Assemblages of endophytic bacteria in chili4 pepper (Capsicum annuum L.) and their antifungal activity against phytopathogens in vitro. Plant Om-ics, 2013, 6, 441–448; https://search.informit.org/doi/abs/10.3316/ INFORMIT.844523344855871
  • Ramírez-Cariño, H. F. et al., Biocontrol of Alternaria alternata and Fusarium oxysporum by Trichoderma asperelloides and Bacillus paralicheniformis in tomato plants. Antonie van Leeuwenhoek, 2020, 113, 1247–1261; https://doi.org/10.1007/s10482-020-01433-2.
  • Kannan, C., Mishra, D., Rekha, G., Maruthi, P., Shaik, H. and Sun-daram, R. M., Diversity analysis of antagonistic microbes against bacterial leaf and fungal sheath blight diseases of rice. Egypt. J. Biol. Pest Control, 2021, 31, 1–16; https://doi.org/10.1186/s41938-021-00462-x.
  • de los Santos Villalobos, S., Robles, R. I., Cota, F. I. P., Larsen, J., Lozano, P. and Tiedje, J. M., Bacillus cabrialesii sp. nov., an endo-phytic plant growth promoting bacterium isolated from wheat (Triti-cum turgidum subsp. durum) in the Yaqui Valley, Mexico. Int. J. Syst. Evol. Microbiol., 2019, 69, 3939–3945; https://doi.org/10. 1099/ijsem.0.003711.
  • Zhou, L., Song, C., Li, Z. and Kuipers, O. P., Antimicrobial activity screening of rhizosphere soil bacteria from tomato and genome-based analysis of their antimicrobial biosynthetic potential. BMC Genomics, 2021, 22, 1–14; https://doi.org/10.1186/s12864-020-07346-8.
  • Gopalakrishnan, S., Humayun, P., Kiran, B. K., Kannan, I. G. K., Vidya, M. S., Deepthi, K. and Rupela, O., Evaluation of bacteria isolated from rice rhizosphere for biological control of charcoal rot of sorghum caused by Macrophomina phaseolina (Tassi) Goid. World J. Microbiol. Biotechnol., 2011, 27, 1313–1321; https://doi. org/10.1007/s11274-010-0579-0.
  • Alloway, B. J., Zinc in Soils and Crop Nutrition, International Zinc As-sociation Communications, IZA Publications, Brussels, Belgium, 2004.
  • Garbeva, P., Van Veen, J. A. and Van Elsas, J. D., Assessment of the diversity, and antagonism towards Rhizoctonia solani AG3, of Pseudomonas species in soil from different agricultural regimes. FEMS Microbiol. Ecol., 2004, 47, 51–64; https://doi.org/10.1016/ S0168-6496(03)00234-4.
  • Arora, N. K., Kim, M. J., Kang, S. C. and Maheshwari, D. K., Role of chitinase and -1,3-glucanase activities produced by a fluores-cent pseudomonad and in vitro inhibition of Phytophthora capsici and Rhizoctonia solani. Can. J. Microbiol., 2007, 53, 207–212; https://doi.org/10.1139/w06-119.
  • del Carmen Orozco-Mosqueda, M., Glick, B. R. and Santoyo, G., ACC deaminase in plant growth-promoting bacteria (PGPB): an ef-ficient mechanism to counter salt stress in crops. Microbiol. Res., 2020, 235, 126439; https://doi.org/10.1016/j.micres.2020.126439.
  • Ahmed, E. and Holmström, S. J., Siderophores in environmental research: roles and applications. Microb. Biotechnol., 2014, 7, 196– 208; https://doi.org/10.1111/1751-7915.12117.
  • Olanrewaju, O. S., Glick, B. R. and Babalola, O. O., Mechanisms of action of plant growth promoting bacteria. World J. Microbiol. Biotechnol., 2017, 33, 1–16; https://doi.org/10.1007/s11274-017-2364-9.
  • Rodrigues, A. A., Forzani, M. V., Soares, R. D. S., Sibov, S. T. and Vieira, J. D. G., Isolation and selection of plant growth-promoting bacteria associated with sugarcane. Pesqui. Agropecu. Trop., 2016, 46, 149–158; https://doi.org/10.1590/1983-40632016v4639526.
  • Friedrich, N., Hagedorn, M., Soldati-Favre, D. and Soldati, T., Prison break: pathogens’ strategies to egress from host cells. Mi-crobiol. Mol. Biol. Rev., 2012, 76, 707–720; https://doi.org/10. 1128/MMBR.00024-12.

Abstract Views: 229

PDF Views: 109




  • Salt-pan bacteria as potential plant growth promoters and their antagonistic activity to fungal pathogens of Capsicum annuum L.

Abstract Views: 229  |  PDF Views: 109

Authors

M. Pawaskar
School of Biological Sciences and Biotechnology, Goa University, Goa 403 206, India, India
K. P. Krishnan
Department of Arctic Operations, National Centre for Polar and Ocean Research, Goa 403 804, India, India
S. Kerkar
School of Biological Sciences and Biotechnology, Goa University, Goa 403 206, India, India

Abstract


Chilli, an essential condiment worldwide, is generally cultivated in paddy fields and can be infected by fungal pathogens, thus hampering its yield. Due to increasing soil salinization, the efficacy of many biocontrol agents is poor in the fields. In this study, bacteria (about 196) isolated from the Goan salt pans in India were screened for their antifungal activity against Fusarium oxys­porum, Fusarium pallidoroseum, Rhizoctonia solani and Pythium aphanidermatum. Halotolerant isolates of Bacillus tequilensis, Bacillus subtilis subsp. inaquosorum, Bacillus cabrialesii, Bacillus licheniformis, Bacillus paralicheniformis and Brevibacterium antiquum could grow under a wide range of pH, temperature and NaCl concentrations, and also displayed plant growth-promoting attributes

Keywords


Antagonistic activity, chilli, fungal pathogens, plant growth promotion, salt-pan bacteria.

References





DOI: https://doi.org/10.18520/cs%2Fv123%2Fi9%2F1129-1135