Rapid industrialization and urbanization have increased air pollution, which poses a serious threat to human life. In megacities, the number of patients suffering from cardiovascular and respiratory diseases have increased rapidly. Face mask can be used for protection from outdoor air pollution, but indoor air quality can only be maintained through expensive, energy-inefficient air filtration devices. In the present study, nanofibrous polyacrylonitrile (PAN) filters encapsulated with titanium dioxide (TiO2) nanoparticles were developed using the electrospinning technique. The filters are porous and nearly transparent and therefore do not resist sunlight and airflow. Field testing of the PAN : TiO2 filters was done against the real aerosol particles and laboratory testing was done against ammonium sulphate particles. The field test results showed efficiency of about ~81% against total suspended aerosol particles (TSPM) and ~75% against laboratory generated particles. The TiO2 nanoparticles have been reported to kill the influenza virus and may help minimize an individual’s exposure to many harmful microbes due to their antimicrobial properties
Keywords
Air pollution, antimicrobial properties, electro-spinning technique, nanofibrous filters, nanoparticles.
User
Font Size
Information