Open Access Open Access  Restricted Access Subscription Access

Cross-resistance and biochemical mechanism in an insecticide-resistant population of Trichogramma chilonis Ishii (Hymenoptera: Trichogrammatidae) and its parasitizing efficiency against invasive fall armyworm Spodoptera frugiperda (J.E. Smith)


Affiliations
1 Department of Entomology, University of Agricultural Sciences, Gandhi Krishi Vignan Kendra, Bellary Road, Bengaluru 560 065, India, India
2 ICAR-National Bureau of Agricultural Insect Resources, Hebbal, Bengaluru 560 024, India, India
3 ICAR-National Bureau of Agricultural Insect Resources, Hebbal, Bengaluru 560 024, India, India
 

Trichogramma chilonis is an egg parasitoid of lepidopteran pests and widely used in biological control and integrated pest management (IPM) programmes. In this study, the cross-resistance in multiple insecticide-tolerant strain of T. chilonis was evaluated against chlorantraniliprole 18.5% SC, spinetoram 11.7% SC and thiamethoxam 12.6% + lambda-cyhalothrin 9.5% ZC. Bioassay studies revealed the highest resistance level against chlorantraniliprole (8.83-fold resistance) over the susceptible population, followed by spinetoram (2.41-fold). Metabolic enzymes carboxylesterase and glutathione S-transferase showed major involvement in the resistant populations, with the highest activity obser­ved against chlorantraniliprole, followed by spinetoram. The resistant population at field recommended doses of chlorantraniliprole (400 ppm), parasitized 52.92% and 44.10% of Corcyra cephalonica and Spodoptera frugiperda eggs respectively, compared to 15.48% and 9.6% parasitism by the susceptible population. Integration and utilization of resistant strains of T. chilonis in IPM programmes can provide improved control of insect pests under insecticide-sprayed conditions and may reduce the insecticide load on crops
User
Notifications
Font Size

  • Zang, L.-S., Wang, S., Zhang, F. and Desneux, N., Biological control with Trichogramma in China: history, present status and perspec-tives. Annu. Rev. Entomol., 2020, 66(1), 463–484.
  • Li, L.-Y., Worldwide use of Trichogramma for biological control on different crops: a survey. In Biological Control with Egg Para-sitoids (eds Wajnberg, E. and Hassan, S. A.), CAB International, Oxon, UK, 1994, pp. 37–53.
  • Parra, J. R. P. and Coelho Jr, A., Insect rearing techniques for bio-logical control programs, a component of sustainable agriculture in Brazil. Insects, 2022, 13, 105.
  • Khanh, D. T., Chailleux, H., Tiradon, A., Desneux, N., Colombel, E. and Tabone. E., Using new egg parasitoids (Trichogramma spp.) to improve integrated management against Tuta absoluta. EPPO Bull., 2012, 42, 249–254.
  • Shylesha, A. N. et al., Studies on new invasive pest Spodoptera frugiperda (J.E. Smith) (Lepidoptera: Noctuidae) and its natural enemies. J. Biol. Control, 2018, 32, 145–151.
  • Ganiger, P. C., Yeshwanth, H. M., Muralimohan, K., Vinay, N., Kumar, A. R. V. and Chandrashekara, K., Occurrence of the new invasive pest, fall armyworm, Spodoptera frugiperda (J.E. Smith) (Lepidoptera: Noctuidae), in the maize fields of Karnataka, India. Curr. Sci., 2018, 115(4), 621–623.
  • Sharanabasappa, et al., First report of the fall armyworm, Spodoptera frugiperda (J.E. Smith) (Lepidoptera: Noctuidae), an alien invasive pest on maize in India. Pest Manage. Hortic. Ecosyst., 2018, 24, 23– 29.
  • Sisay, B., Tefera, T., Wakgari, M., Ayalew, G. and Mendesil, E., The efficacy of selected synthetic insecticides and botanicals against fall armyworm, Spodoptera frugiperda, in maize. Insects. 2019, 10(2), 45.
  • Navik, O., Shylesha, A. N., Patil, J., Venkatesan, T., Lalitha, Y. and Ashika, T. R., Damage, distribution and natural enemies of invasive fall armyworm Spodoptera frugiperda (J.E. Smith) under rainfed maize in Karnataka, India. Crop Prot., 2021, 143, 105536.
  • Visalakshi, M. et al., Report of the invasive fall armyworm, Spodo-ptera frugiperda (J.E. Smith) (Lepidoptera: Noctuidae) and its natural enemies on maize and other crops from Andhra Pradesh, India. J. Entomol. Zool. Stud., 2019, 7(4), 1348–1352.
  • Sharanabasappa, D., Pavithra, H. B., Kalleshwaraswamy, C. M., Shivanna, B. K., Maruthi, M. S. and Mota-Sanchez. D., Field efficacy of insecticides for management of invasive fall armyworm, Spodoptera frugiperda (J.E. Smith) (Lepidoptera: Noctuidae) on maize in India. Fla. Entomol., 2020, 103(2), 221–227.
  • Venkatesan, T. and Jalali, S. K., Trichogrammatids: adaptation to stresses. In Biological Control of Insect Pests using Egg Parasitoids (eds Sithanantham, S. et al.). Springer India, New Delhi, 2013, pp. 105–125.
  • Jalali, S. K., Venkatesan, T., Srinivasa Murthy, K. and Ojha, R., Management of Helicoverpa armigera (Hübner) on tomato using insecticide resistance egg parasitoid, Trichogramma chilonis Ishii in farmers’ field. Indian J. Hortic. 2016, 73(4), 611–614.
  • Panini, M., Manicard, G. C., Moores, G. and Mazzoni, E., An overview of the main pathways of metabolic resistance in insects. Invertebr. Surviv. J., 2016, 13(1), 326–335.
  • Ye, M. et al., The role of insect cytochrome P450s in mediating in-secticide resistance. Agriculture, 2022, 12, 53.
  • Oakeshott, J. G., Claudianos, C., Campbell, P. M., Newcomb, R. D. and Russell, J. R., Biochemical genetics and genomics of insect esterases. In Comprehensive Molecular Insect Science (eds Gilbert, L. I., Iatro, K. and Gill, S.), Elsevier, The Netherlands, 2010, pp. 1–73.
  • Kliot, A. and Ghanim, M., Fitness costs associated with insecticide resistance. Pest Manage. Sci., 2012, 68(11), 1431–1437.
  • Nagaraja, H., Mass production of Trichogrammatid parasitoids. In Biological Control of Insect Pests using Egg Parasitoids (eds Sithanantham, S. et al.), Springer, New Delhi, 2013, pp. 175–189.
  • Ballal, C. R., Kumar, P. and Ramani, S., Laboratory evaluation, storability and economics of an artificial diet for rearing Chilo par-tellus (Swinhoe) (Lepidoptera: Pyralidae). J. Entomol. Res., 1995, 19, 135–141.
  • Kerima, O. Z., Niranjana, P., Lalitha, Y., Jalali, S. K. and Ballal, C. R., Inheritance of monocrotophos resistance in egg parasitoid Tricho-gramma chilonis (Ishii) (Hymenoptera: Trichogrammatidae). Curr. Agric. Res. J., 2017, 5(3), 297–304.
  • Bradford, M. M., A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem., 1976, 74, 248–254.
  • Van Asperen, K., A study of housefly esterases by means of a sen-sitive colorimetric method. J. Insect Physiol., 1962, 8, 401–416.
  • Kinoshita, F. K., Frawley, J. P. and Du Bois, K. P., Quantitative measurement of induction of hepatic microsomal enzymes by various dietary levels of DDT and toxaphene in rats. Toxicol. Appl. Phar-macol., 1966, 9, 505–513.
  • Saber, M., Acute and population level toxicity of imidacloprid and fenpyroximate on an important egg parasitoid, Trichogramma cacoeciae (Hymenoptera: Trichogrammatidae). Ecotoxicology, 2011, 20, 1476– 1484.
  • Preetha, G., Stanley, J., Suresh, S. and Kuttalam, S., Toxicity of selected insecticides to Trichogramma chilonis: assessing their safety in the rice ecosystem. Phytoparasitica, 2009, 37(3), 208–215.
  • Yang, Y., Wang, C., Xu, H., Tian, J. and Lu, Z., Response of Tricho-gramma spp. (Hymenoptera: Trichogrammatidae) to insecticides at concentrations sublethal to Cnaphalocrocis medinalis (Lepidoptera: Pyralidae). J. Econ. Entomol., 2020, 113(2), 646–653.
  • Xie, L. C., Jin, L. H., Lu, Y. H., Xu, H. X., Zang, L. S., Tian, J. C. and Lu, Z. X., Resistance of lepidopteran egg parasitoids, Tricho-gramma japonicum and Trichogramma chilonis, to insecticides used for control of rice planthoppers. J. Econ. Entomol., 2022, 115(2), 446–454.
  • Shankarganesh, K., Paul, B. and Gautam, R. D., Studies on ecological safety of insecticides to egg parasitoids Trichogramma chilonis Ishii and Trichogramma brasiliensis (Ashmead). Natl. Acad. Sci. Lett., 2013, 36(6), 581–585.
  • Larson, J. L., Redmond, C. and Potter, D. A., Comparative impact of an anthranilic diamide and other insecticidal chemistries on benefi-cial invertebrates and ecosystem services in turfgrass. Pest Manage. Sci., 2011, 68(5), 740–748.
  • Ashwini, M., Mohan, M., Sivakumar, G. and Venkatesan, T., Enhanced insecticide-resistance spectrum in green lacewing predator, Chrys-operla zastrowi sillemi (strain PTS-8) and its potential role in the management of sucking pests of cotton. Curr. Sci., 2021, 120(2), 423–428.
  • Khan, M. A., Lethal and parasitism effects of selected novel pesticides on adult Trichogramma chilonis (Hymenoptera: Trichogrammatidae). J. Plant Dis. Prot., 2020,127, 81–90.
  • Deshmukh, Y. V., Undirwade, D. B. and Dadmal, S. M., Effect of some newer insecticides on parasitization by Trichogramma species under laboratory condition. J. Entomol. Zool. Stud., 2018, 6(3), 228– 231.
  • Khan, M. A., Khan, H. and Ruberson, J. R., Lethal and behavioral effects of selected novel pesticides on adults of Trichogramma pre-tiosum (Hymenoptera: Trichogrammatidae). Pest Manage. Sci., 2015, 71, 1640–1648.
  • Zhang, J., Du, W., Jin, X., Ruan, C. and Zang, L., Susceptibility of the egg parasitoid Trichogramma dendrolimi (Hymenoptera: Trichogrammatidae) to three kinds of insecticides commonly used in fields. Acta Phytophyl. Sin., 2014, 41, 555–561.
  • Costa, M. A., Moscardini, V. F., da Costa Gontijo, P., Carvalho, G. A., de Oliveira, R. L. and de Oliveira, H. N., Sublethal and trans-generational effects of insecticides in developing Trichogramma galloi (Hymenoptera: Trichogrammatidae): toxicity of insecticides to Trichogramma galloi. Ecotoxicology, 2014, 23(8), 1399–1408.
  • Jalali, S. K., Singh, S. P., Venkatesan, T. and Murthy, K. S., Develop-ment of endosulfan tolerant strain of an egg parasitoid Tricho-gramma chilonis Ishii (Hymenoptera: Trichogrammatidae). Indian J. Exp. Biol., 2006, 44(2), 584–590.

Abstract Views: 157

PDF Views: 97




  • Cross-resistance and biochemical mechanism in an insecticide-resistant population of Trichogramma chilonis Ishii (Hymenoptera: Trichogrammatidae) and its parasitizing efficiency against invasive fall armyworm Spodoptera frugiperda (J.E. Smith)

Abstract Views: 157  |  PDF Views: 97

Authors

Priyanka Dupatne
Department of Entomology, University of Agricultural Sciences, Gandhi Krishi Vignan Kendra, Bellary Road, Bengaluru 560 065, India, India
T. Venkatesan
ICAR-National Bureau of Agricultural Insect Resources, Hebbal, Bengaluru 560 024, India, India
Omprakash Navik
ICAR-National Bureau of Agricultural Insect Resources, Hebbal, Bengaluru 560 024, India, India
M. Mohan
ICAR-National Bureau of Agricultural Insect Resources, Hebbal, Bengaluru 560 024, India, India
K. M. Venugopal
ICAR-National Bureau of Agricultural Insect Resources, Hebbal, Bengaluru 560 024, India, India
Basavaarya
ICAR-National Bureau of Agricultural Insect Resources, Hebbal, Bengaluru 560 024, India, India
V. Linga
ICAR-National Bureau of Agricultural Insect Resources, Hebbal, Bengaluru 560 024, India, India
Y. Lalitha
ICAR-National Bureau of Agricultural Insect Resources, Hebbal, Bengaluru 560 024, India, India
G. Sivakumar
ICAR-National Bureau of Agricultural Insect Resources, Hebbal, Bengaluru 560 024, India, India
M. Ashwini
Department of Entomology, University of Agricultural Sciences, Gandhi Krishi Vignan Kendra, Bellary Road, Bengaluru 560 065, India, India

Abstract


Trichogramma chilonis is an egg parasitoid of lepidopteran pests and widely used in biological control and integrated pest management (IPM) programmes. In this study, the cross-resistance in multiple insecticide-tolerant strain of T. chilonis was evaluated against chlorantraniliprole 18.5% SC, spinetoram 11.7% SC and thiamethoxam 12.6% + lambda-cyhalothrin 9.5% ZC. Bioassay studies revealed the highest resistance level against chlorantraniliprole (8.83-fold resistance) over the susceptible population, followed by spinetoram (2.41-fold). Metabolic enzymes carboxylesterase and glutathione S-transferase showed major involvement in the resistant populations, with the highest activity obser­ved against chlorantraniliprole, followed by spinetoram. The resistant population at field recommended doses of chlorantraniliprole (400 ppm), parasitized 52.92% and 44.10% of Corcyra cephalonica and Spodoptera frugiperda eggs respectively, compared to 15.48% and 9.6% parasitism by the susceptible population. Integration and utilization of resistant strains of T. chilonis in IPM programmes can provide improved control of insect pests under insecticide-sprayed conditions and may reduce the insecticide load on crops

References





DOI: https://doi.org/10.18520/cs%2Fv124%2Fi1%2F115-122