Open Access Open Access  Restricted Access Subscription Access

Geological, geochemical and mineralogical characteristics of the Bamhantara bauxite over Deccan Basalt Province of Kabirdham district, Chhattisgarh, India


Affiliations
1 Geological Survey of India, State Unit: West Bengal and Andaman, Bhu-Bijnan Bhavan, DK-6, Sector-II, Salt Lake, Kolkata 700 091, India., India
2 Geological Survey of India, Eastern Region, Bhu-Bijnan Bhavan, DK-6, Sector-II, Salt Lake, Kolkata 700 091, India., India
3 Geological Survey of India, Kanchanganga Colony, Amanaka, Raipur 492 010, India., India
 

This study presents the probable environment from petrographical, mineralogical and geochemical analyses of representative samples from Bamhantara block, Kabirdham district, Chhattisgarh, India using EPMA and SEMEDS for petrological study, and XRF and ICP-MS for geochemical inference. Microscopic study revealed the dominance of boehmite minerals that specify the synenvironmental depositional condition, while circular/ well-rounded pisolitic texture indicated autochthonous deposits. The geochemical study determined the progressive changes in major, trace and REE concentrations from precursor rock to bauxite during weathering. Bamhantara bauxite has been formed under oxidizing (positive Ce anomalies; Ce/Ce*, 0.92–2.15) and near alkaline to alkaline ((La/Yb)N and La/Y ratio > 1) conditions. The analogous trend of REE for bauxite/laterite and precursor rock indicates that lateritic bauxite had an autochthonous origin and is a chemical disintegration product of Deccan Trap basalt under tropical to subtropical climates. The geochemical behaviour of REE revealed that bauxite/laterite was generated from type-2 basalt characterized by positive Ce, Eu and Dy anomaly. The low concentration of kaolinite indicates desilication under a hot tropical climate.

Keywords

Bauxite, Basalt, Laterite, Precursor Rock, Weathering.
User
Notifications
Font Size

  • Retallack, G. J., Lateritization and bauxitization events. Econ. Geol., 2010, 105, 655–667.
  • Ouyang, Y., Liu, H., Wang, X., Liu, S., Zhang, J. and Gao, H., Spatial distribution prediction of laterite–bauxite in Bolaven Plateau using GIS. J. Earth Sci., 2019, 30, 1010–1019.
  • Freyssinet, P. H., Butt, C. R. M., Morris, R. C. and Piantone, P., Ore-forming processes related to lateritic weathering. Econ. Geol., 2005, 31A(6), 547–558.
  • Roy Chowdhury, M. K., Venkatesh, V., Anandalwar, M. A. and Paul, D. K., Recent concepts on the origin of Indian laterite. Geological Survey of India, Calcutta, 1965; http://www.new.dli.ernet. in/rawdataupload/upload/insa/INSA1/20005ab9547.pdf (accessed on 12 September 2011).
  • Bland, W. and Rolls, D., Weathering: An Introduction to the Scientific Principles, Arnold, London, UK, 1998, p. 271.
  • Schaetzl, R. J. and Anderson, S., Soils: Genesis and Geomorphology, Cambridge University Press, Cambridge, UK, 2005.
  • Tan, L. G., A summary of the formation and distribution law of gibbsite-type bauxite deposit at home and abroad. J. Wanxi Univ., 1999, 15(2), 43–46 (in Chinese with English abstract).
  • Yang, Z. Y., World bauxite reserves and distribution. World Nonferr. Met., 1990, 8, 7–11 (in Chinese with English abstract).
  • Mondillo, N., Herrington, R. and Boni, M., Bauxites. In Reference Module in Earth Systems and Environmental Sciences, Encyclopedia of Geology (Second Edition), Elsevier, 2021, pp. 694–707.
  • Mahoney, J. J., Deccan traps. In Continental Flood Basalts (ed. Macdougall, J. D.), Kluwer, Dordrecht, The Netherlands, 1988, pp. 151–194.
  • Ramkumar, M., Menier, D., Mathew, M., Santosh, M. and Siddiqui, N. A., Early Cenozoic rapid flight enigma of the Indian subcontinent resolved: roles of topographic top loading and subcrustal erosion. Geosci. Front., 2017, 8, 15–23.
  • McFarlane, M. J., Laterite and Landscape, Academic Press, London, UK, 1976.
  • McFarlane, M. J., Laterites. In Chemical Sediments and Geomorphology (eds Goudie, A. S. and Pye, K.), Academic Press, London, UK, 1983, pp. 401–425.
  • Summerfield, M. A., Global Geomorphology, Harlow, Longman, 1991, p. xxii + 547.
  • Thomas, M. F., Geomorphology in the tropics. In A Study of Weathering and Denudation in Low Latitudes, John Wiley, Chichester, UK, 1994, p. 460.
  • Eliopoulos, D. G. and Economou-Eliopoulos, M., Geochemical and mineralogical characteristics of Fe–Ni and bauxitic–laterite deposits of Greece. Ore Geol. Rev., 2000, 16, 41–58.
  • Golightly, J. P., Nickeliferous laterite deposits. Econ. Geol., 1981, 75, 710–735.
  • Boulange, B., Bouzat, G. and Pouliquen, M., Mineralogical and geochemical characteristics of two bauxitic profiles, Fria, Guinea Republic. Miner. Deposita, 1996, 31, 432–438.
  • Colin, F., Beauvais, A., Ambrosi, J. P. and Nahon, D., Les latérites en environnement tropical, source de métaux d'intérêt économique. Assises de la Recherche Française dans le Pacifique, Noumea, New Caledonia, 2004, pp. 104–107.
  • Nahon, D., Introduction to the Petrology of Soils and Chemical Weathering, Wiley-Interscience, New York, 1991, p. 313.
  • Tardy, Y., Petrology of Laterites and Tropical Soils, Balkema, Rotterdam, The Netherlands, 1997, p. 408.
  • Traore, D., Beauvais, A., Chabaux, F., Peiffert, C., Parisot, J. C., Ambrosi, J. P. and Colin, F., Chemical and physical transfers in an ultramafic rock weathering profile: Part 1. Supergene dissolution of Pt-bearing chromite. Am. Mineral., 2008, 93(1), 22–30.
  • Traore, D., Beauvais, A., Auge, T., Parisot, J. C., Colin, F. and Cathelineau, M., Chemical and physical transfers in an ultramafic rock weathering profile: Part 2. Dissolution vs accumulation of platinum-group minerals. Am. Mineral., 2008, 93(1), 31–38.
  • Nugraheni, R. D. and Sunjaya, D., Geochemical approach to reveal the genetic occurrence of gibbsite, relative to the parent rock type in lateritic bauxites. J. Phys.: Conf. Ser. 1363 012042, 2019, pp. 1–11.
  • Widdowson, M., Evolution of laterite in Goa. In Natural Resources of Goa: A Geological Perspective (eds Mascarenhas, A. and Kalavampara, G.), 2009, pp. 35–68.
  • Lacroix, A., Les laterites de Guineeet les produitsd’ alteration qui leursontassocies. Nouv. Arch. Mus. Hist., Nat., 1913, V, 255–356.
  • von Richthofen, F. F., Führer für Forschungsreisende. Berlin, Germany, 1886, pp. 464–467.
  • Holland, T. H., On the constitution, origin and dehydration of laterite. Geol. Mag., 1903, 4, 59–69.
  • Campbell, J. M., Laterite: its origin, structure and minerals. Afines Mag., 1917, 17, 67–71; 120–128; 171–179; 220–229.
  • Harrison, J. B., The residual earths of British Guiana commonly termed laterite. Geol. Mag., 1910, 7, 439–452; 488–494; 553–562.
  • Simpson, E. S., Notes on laterite in Western Australia. Geol. Mag., 2018, 9, 399–406.
  • Li, P. et al., Influence of geomorphology and leaching on the formation of Permian bauxite in northern Guizhou Province, South China. J. Geochem. Explor., 2020, 210, 106446; doi:10.1016/j. gexplo.2019.106446.
  • Rao, N. A., A report on the reconnaissance survey of the bauxite occurrences in the in Bodai–Daldali area, Rajnandgaon District, M.P. Geological Survey India, 1978.
  • Rao, N. A., The investigation of the bauxite deposits in Bodai– Daldali area (Bodai and Kesmarda blocks), Rajnandgaon District, M.P. Geological Survey India, 1979.
  • Rao, N. A., Report on the investigation of the bauxite deposits in Bodai–Daldali area (Semsata and Rabda blocks), Rajnandgaon District, M.P. Geological Survey India, 1982.
  • Abat, L. T. et al., Geological, geochemical and mineralogical characteristics of REE-bearing Las Mercedes bauxite deposit, Domiican Republic. Ore Geol. Rev., 2017, 89, 114–131.
  • Putzolu, F., Papa, A. P., Mondillo, N., Boni, M., Balassone, G. and Mormone, A., Geochemical characterization of bauxite deposits from the Abruzzi mining district (Italy). Minerals, 2018, 8, 298.
  • Bhukte, P. G. et al., Geochemical, mineralogical and petrological characteristics of lateritic bauxite deposits formed on Deccan Trap basalt with reference to high-level and coastal (low level) deposits of Maharashtra. J. Geol. Soc. India, 2020, 95, 587–598.
  • Chandra, S., Natarajan, A. and Thorat, P. K., Stratigraphy and structure in parts of Kawardha Tehsil of Rajnandgaon District and Mungeli Tehsil of Bilaspur District, Madhya Pradesh. Geological Survey India (Unpubl.), 1982.
  • Courtillot, V. M., Feraud, H., Maluski, D., Morcau, M. G. and Besse, J., Deccan flood basalts and the Cretaceous/Tertiary boundary. Nature, 1988, 333, 843–846.
  • Duncan, R. A. and Pyle, D. G., Rapid eruption of the Deccan flood basalts at the Cretaceous/Tertiary boundary. Nature, 1988, 333, 841–843.
  • Das, B., Khan, M. W. Y. and Dhruw, H., Trace and REE geochemistry of bauxite deposit of Darai–Daldali plateau, Kabirdham district, Chhattisgarh, India. J. Earth Syst. Sci., 2020, 129, 117.
  • Sethumadhav, M. S., Somashekar, K. N. and Vennemann, T., Genesis of gibbsite and palaeoclimatic conditions deciphered from O and H isotopes: a case study from Deccan basalt derived lateritic residuum, India. Int. J. Earth Sci. Eng., 2016, 9, 918–923.
  • Abedini, A. and Khosravi, M., Geochemical constraints on the Triassic–Jurassic Amir–Abad karst-type bauxite deposit, NW Iran. J. Geochem. Explor., 2020, 211, 106489; https://doi.org/10.1016/ j.explo.2020.106489.
  • Momo, M. N., Beauvais, A., Tematio, P., Ambrosi, J. P., Yemefack, M., Yerimae, B. P. K. and Yongue-Fouateu, R., Lateritic weathering of trachyte, and bauxite formation in West Cameroon: morphological and geochemical evolution. J. Geochem. Explor., 2019; doi:10.1016/j.explo.2019.06.006.
  • Nyamsari, D. G. and Yalcin, M. G., Statistical analysis and source rock of the Minim–Martap plateau bauxite, Cameroon. Arab. J. Geosci., 2017, 10, 415.
  • Sidibe, M. and Yalcin, M. G., Petrography, mineralogy, geochemistry and genesis of the Balaya bauxite deposits in Kindia region, Maritime Guinea, West Africa. J. Afr. Earth Sci., 2019, 149, 348–366.
  • Torró, L. et al., Geological, geochemical and mineralogical characteristics of REE-bearing Las Mercedes bauxite deposit, Dominican Republic. Ore Geol. Rev., 2017, 89, 114–131.
  • Ling, K. Y., Zhu, X. Q., Tang, H. S., Wang, Z. G., Yan, H. W., Han, T. and Chen, W. Y., Mineralogical characteristics of the karstic bauxite deposits in the Xiuwen ore belt, Central Guizhou Province, Southwest China. Ore Geol. Rev., 2015, 65, 84–96.
  • Cheney, J. T. and Crowley, P. D., Introduction to the SEM/EDS or every composition tells a story. In Teaching Mineralogy (eds Brady, J. B., Mogk, D. W. and Perkins III, D.), Mineralogical Society of America and National Science Foundation, 2008.
  • Patel, V. N., Trivedi, R. K., Adil, S. H. and Golekar, R. B., Geochemical and mineralogical study of bauxite deposit of Mainpat Plateau, Surguja District, Central India. Saudi Soc. Geosci., 2013, 7(9), 3505–3512.
  • Balasubramaniam, K. S., Surendra, M. and Ravi Kumar, T. V., Genesis of certain bauxite profiles from India. Chem. Geol., 1987, 60, 227–235.
  • Aleva, G. J. J., Laterites: concepts, geology, morphology and chemistry. International Soil Reference and Information Centre, The Netherlands, 1994.
  • Schellmann, W., Eineneue laterite definition. Geol. Jahrb., 1982, D58, 31–47.
  • Chen, J., Wang, Q., Zhang, Q., Carranza, E. J. M. and Wang, J., Mineralogical and geochemical investigations on the iron-rich gibbsitic bauxite in Yongjiang basin, SW China. J. Geochem. Explor., 2018, 188, 413–426.
  • Crnicki, J. and Jurkovic, I., Rare earth elements in Triassic bauxites of Croatia Yugoslavia. Travaux, 1990, 19, 239–248.
  • Maksimovic, Z. and Panto, G., Contribution to the geochemistry of the rare earth elements in the karst-bauxite deposits of Yugoslavia and Greece. Geoderma, 1991, 51, 93–109.
  • Dennen, W. H. and Norton, H. A., Geology and geochemistry of bauxite deposits in the lower Amazon basin. Econ. Geol., 1977, 72, 82–89.
  • Goldschmidt, V. M., The principle of distribution of chemical elements in minerals and rocks. J. Chem. Soc., 1937, 655–673.
  • Combes, P. J. and Bárdossy, G., Geodynamics of bauxites in the Tethyan realm. In The Tethys Ocean (eds Nairn, A. E. M. et al.), Springer US, Boston, MA, USA, 1996, pp. 347–365.
  • Mameli, P., Mongelli, G., Oggiano, G. and Dinelli, E., Geological, geochemical and mineralogical features of some bauxite deposits from Nurra (Western Sardinia, Italy): insights on conditions of formation and parental affinity. Int. J. Earth Sci., 2007, 96, 887–902.
  • Singh, B. P. and Srivastava, V. K., Petrographical, mineralogical, and geochemical characteristics of the Palaeocene lateritic bauxite deposits of Kachchh Basin, Western India. Geol. J., 2018, 54, 2588– 2607.
  • Gu, J., Zhilong, H., Hongpeng, F., Zhongguo, J., Zaifei, Y. and Jiawei, Z., Mineralogy, geochemistry, and genesis of lateritic bauxite deposits in the Wuchuan–Zheng’an–Daozhen area, Northern Guizhou Province, China. J. Geochem. Explor., 2013, 130, 44–59.
  • Zhang, J.-Y., Wang, Q., Liu, X.-F., Zhou, G.-F., Xu, H.-P. and Zhu, Y.-G., Provenance and ore-forming process of Permian lithium-rich bauxite in Central Yunnan, SW China. Ore Geol. Rev., 2022, 145, 104862.
  • Valeton, I. (ed.), Developments in soil science. In Bauxites, 1972, 1st edn.
  • Harrison, J. B., The katamorphism of igneous rocks under humid tropical conditions. Imperial Bureau of Soil Science, Rothamsted Experimental Station, Harpenden, England, UK, 1933.
  • Rao, J. J. and Murthy, C. V. K., Some observation on the mineralogy and geochemistry of Hazaridadar and Raktidadar plateau, Amarkantak area, M.P., India. In Proceedings of Seminar on Latertization Processes, Oxford and IBH, New Delhi, 1982, pp. 89–103.
  • Calagari, A. A. and Abedini, A., Geochemical investigations on Permo-Triassic bauxite horizon at Kanisheeteh, east of Bukan, West Azarbaidjan, Iran. J. Geochem. Explor., 2007, 94, 1–18.
  • Hanilçi, N., Geological and geochemical evolution of the Bolkardaği bauxite deposits, Karaman, Turkey: transformation from shale to bauxite. J. Geochem. Explor., 2013, 133, 118–137.
  • Boulangé, B. and Millot, G., La distribution des bauxites sur le craton Ouest-Africain. Sci. Géol. Bull., 1998, 41(1), 113–123.
  • Tardy, Y. and Nahon, D., Geochemistry of laterites, stability of AI– goethite, AI–hematite and Fe3+ kaolinite in bauxites and ferricretes: an approach to the mechanism of concretion formation. Am. J. Sci., 1985, 285, 865–903.
  • Lelong, F., Tardy, Y., Grandin, G., Trescases, J. J. and Boulangé, B., Pedogenesis, chemical weathering, and processes of formation of some supergene ore deposits. In Handbook of Stratabound and Stratiform Deposits 6 (ed. Wolf, K. H.), Elsevier, New York, USA, 1976, pp. 93–173.
  • Monsel, D. A. and Bergen, M. J., Bauxite formation on Proterozoic bedrock of Suriname. J. Geochem. Explor., 2017, 180, 71–90.
  • Bárdossy, G. and Aleva, G. J. J., Lateritic Bauxites, Elsevier, Amsterdam, The Netherlands, 1990.
  • Meyer, F. M., Happel, U., Hausberg, J. and Wiechowski, A., The geometry and anatomy of the Los Pijiguaos bauxite deposit, Venezuela. Ore Geol. Rev., 2002, 20, 27–54.
  • Liu, X. F., Wang, Q. F., Deng, J., Zhang, Q. Z., Sun, S. L. and Meng, J. Y., Mineralogical and geochemical investigations of the Dajia Salento-type bauxite deposits, Western Guangxi, China. J. Geochem. Explor., 2010, 105(3), 137–152.
  • Liu, X. F., Wang, Q. F., Zhang, Q. Z., Yang, S. J., Zhang, Y., Liang, Y. Y. and Qing, C., Transformation from Permian to Quaternary bauxite in Southwestern South China block driven by superimposed orogeny: a case study from Sanhe ore deposit. Ore Geol. Rev., 2017, 90, 1–20; doi:10.1016/j.oregeorev.2016.12.027.
  • Sarkar, D. and Sur, P., Targeting the bauxite rich pockets from lateritic terrain utilizing ASTER data: a case study from Kabirdham district, Chhattisgarh, India. J. Earth Syst. Sci., 2021, 130, 189.
  • Beauvais, A., Palaeoclimatsetdynamique d’un paysagecuirasee du Centrafreque. Morphologie, petrologieetgeochimie. Thesis. University Poitiers, France, 1991, pp. 1–315.
  • Esmaily, D., Rahimpour Bonab, H., Esna Ashari, A. and Kananian, A., Petrography and geochemistry of the Jajarm karst bauxite ore deposit, NE Iran: implications for source rock material and ore genesis. Turk. J. Earth Sci., 2010, 19, 267–284.
  • Maclean, W. H., Bonavia, F. F. and Sanna, G., Argillite debris converted to bauxite during karst weathering: evidence from immobile element geochemistry at the Olmedo Deposit, Sardinia. Miner. Deposita, 1997, 32, 607–616.
  • Mordberg, L. E., Impact of crystalline basement magmatic rock composition on the geochemistry of bauxite types. In Geochemistry of the Earth Surface. Chemical Geology (ed. Kump, L. R.), 1993, 107, pp. 245–249; doi:org/10.1016/0009-254(93)-90184-k.
  • Liu, X., Wang, Q., Feng, Y., Li, Z. and Cai, S., Genesis of the Guangou karstic bauxite deposit in western Henan. Ore Geol. Rev., 2013, 55, 162–175.
  • Long, Y., Chi, G., Liu, J., Jin, Z. and Dai, T., Trace and rare earth elements constraints on the sources of the Yunfeng paleo-karstic bauxite deposit in the Xiuwen–Qingzhen area, Guizhou, China. Ore Geol. Rev., 2017, 91, 1–15.
  • Yang, S., Wang, Q., Deng, J., Wang, Y., Kang, W., Liu, X. and Li, Z., Genesis of karst bauxite- bearing sequences in Baofeng, Henan (China), and the distribution of critical metals. Ore Geol. Rev., 2019, 115, 1–14.
  • Zarasvandi, A., Carranza, E. J. M. and Ellahi, S. S., Geological, geochemical, and mineralogical characteristics of the Mandan and Deh-now bauxite deposits, Zagros Fold Belt, Iran. Ore Geol. Rev., 2012, 48, 125–138.
  • Krauskopf, K. B., Introduction of Geochemistry, McGraw Hill, Book Co, New York, USA, 1967, p. 721.
  • Mongelli, G., Boni, M., Buccione, R. and Sinisi, R., Geochemistry of the Apulian karst bauxites (southern Italy): chemical fractionation and parental affinities. Ore Geol. Rev., 2014, 63, 9–21.
  • Mordberg, L. E., Geochemistry of trace elements in Palaeozoic bauxite profiles in northern Russia. J. Geochem. Explor., 1996, 57, 187–199.
  • Mordberg, L. E. and Spratt, J., Alteration of zircons: the evidence of Zr mobility during bauxitic weathering. In Goldschmidt Conference, Toulouse, France, 1998, pp. 1021–1022.
  • Paul, D. K., Titanium in bauxite. Indian Miner., 1969, 23(3), 23–28.
  • Gonzalez Lopez, J. M., Bauluz, B., Fernandez‐Nieto, C. and Olite, A. Y., Factors controlling the trace element distribution in fine grained rocks: the Albian kaolinite‐rich deposits of the Oliete Basin (NE Spain). Chem. Geol., 2005, 214, 1–19.
  • Keller, W. D., The origin of high-alumina clay minerals – a review. Chem., Clays Clay Miner., 1963, 12, 129–151.
  • Whitney, D. L. and Evans, B. W., Abbreviations for names of rockforming minerals. Am. Mineral., 2010, 95(1), 185–187.

Abstract Views: 544

PDF Views: 145




  • Geological, geochemical and mineralogical characteristics of the Bamhantara bauxite over Deccan Basalt Province of Kabirdham district, Chhattisgarh, India

Abstract Views: 544  |  PDF Views: 145

Authors

Debjani Sarkar
Geological Survey of India, State Unit: West Bengal and Andaman, Bhu-Bijnan Bhavan, DK-6, Sector-II, Salt Lake, Kolkata 700 091, India., India
Pradipta Sur
Geological Survey of India, Eastern Region, Bhu-Bijnan Bhavan, DK-6, Sector-II, Salt Lake, Kolkata 700 091, India., India
Dinesh Kumar Thawait
Geological Survey of India, Kanchanganga Colony, Amanaka, Raipur 492 010, India., India

Abstract


This study presents the probable environment from petrographical, mineralogical and geochemical analyses of representative samples from Bamhantara block, Kabirdham district, Chhattisgarh, India using EPMA and SEMEDS for petrological study, and XRF and ICP-MS for geochemical inference. Microscopic study revealed the dominance of boehmite minerals that specify the synenvironmental depositional condition, while circular/ well-rounded pisolitic texture indicated autochthonous deposits. The geochemical study determined the progressive changes in major, trace and REE concentrations from precursor rock to bauxite during weathering. Bamhantara bauxite has been formed under oxidizing (positive Ce anomalies; Ce/Ce*, 0.92–2.15) and near alkaline to alkaline ((La/Yb)N and La/Y ratio > 1) conditions. The analogous trend of REE for bauxite/laterite and precursor rock indicates that lateritic bauxite had an autochthonous origin and is a chemical disintegration product of Deccan Trap basalt under tropical to subtropical climates. The geochemical behaviour of REE revealed that bauxite/laterite was generated from type-2 basalt characterized by positive Ce, Eu and Dy anomaly. The low concentration of kaolinite indicates desilication under a hot tropical climate.

Keywords


Bauxite, Basalt, Laterite, Precursor Rock, Weathering.

References





DOI: https://doi.org/10.18520/cs%2Fv124%2Fi7%2F827-839