Open Access Open Access  Restricted Access Subscription Access

Dissipation and Degradation Kinetics of Commonly Used Pesticides and their Metabolites In/On Okra, Abelmoschus esculentus (L.) Moench


Affiliations
1 Department of Agricultural Entomology, Bidhan Chandra Krishi Viswavidyalaya, Nadia 741 252, India
2 Department of Agricultural Entomology, Tamil Nadu Agricultural University, Coimbatore 641 003, India
 

Based on the dissipation pattern and degradation kinetics study of pesticides in okra, the average initial deposit of dimethoate and acephate was comparatively higher than emamectin benzoate and flubendiamide. Acephate residues persisted much longer, while, emamectin benzoate persisted for a shorter time. Acephate metabolized to methamidophos on 1 day after treatment. Desido flubendiamide residues were not detected. Okra being harvested on alternate days, following a pre-harvest interval of 24 days after acephate application, is not possible. Thus, usage of acephate at the flowering stage in okra poses the risk of residue detection in the harvested produce. Following a pre-harvest interval of 3–11 days after spraying dimethoate, emamectin benzoate and flubendiamide are mandatory for the safe consumption of okra.

Keywords

Acephate, Dissipation, Dimethoate, Emamectin Benzoate, Half-Life, Okra.
User
Notifications
Font Size

  • Singh, G. and Brar, K. S., Effect of date of sowing on the incidence of Amrasca biguttulabiguttula (Ishida) and Earias spp. on okra. Indian J. Ecol., 1994, 21, 140–144.
  • Sastry, K. S. M. and Singh, S. J., Effect of yellow vein mosaic virus infection on growth and yield of okra crop. Indian Phytopathol., 1974, 27, 294–297.
  • Chaudhary, H. R. and Dadheech, L. N., Incidence of insects attacking okra and the avoidable losses caused by them. Ann. Arid Zone, 1989, 28, 305–307.
  • Kumaran, N., Douressamy, S., Ramaraju, K. and Kuttalam, S., Estimation of damage and yield loss due to Tetranychus urticae Koch (Acari: Tetranychidae) on okra under artificial infestation. J. Acarol., 2007, 17, 4–6.
  • Misra, H. P., Dash, D. D. and Mahapatra, D., Efficacy of some insecticides against okra fruit borer, Earias spp. and leafroller, Sylepta derogata Fab. Ann. Plant Prot. Sci., 2002, 10, 51–54.
  • MPRNL, Annual Progress Report, Monitoring of pesticide residues at national level. All India Network Project on Pesticide Residues, Department of Agriculture, Cooperation and Farmers Welfare, Government of India (GoI), 2019, pp. 13–14; https://www.fssai.gov.in/upload/advisories/2019/10/5da705b31ca78Letter_Report_Pesticides_MRL_16_10_2019.pdf (accessed on 3 March 2017).
  • Meenambigai, C., Bhuvaneswari, K., Mohan Kumar, K. and Sangavi, R., Pesticides usage pattern of okra, Abelmoschus esculentus (L.) Moench in Tamil Nadu. J. Entomol. Zool. Stud., 2017, 5, 1760– 1765.
  • Fang, G., Lau, H. F., Law, W. S. and Li, S. F. Y., Systematic optimisation of coupled microwave-assisted extraction–solid phase extraction for the determination of pesticides in infant milk formula via LC-MS/MS. Food Chem., 2012, 134, 2473–2480; https://doi.org/10.1016/j.foodchem.2012.04.076.
  • WHO, WHO recommended classification of pesticides by hazard and guidelines to classification, 2019 edition. World Health Organization, Geneva, Switzerland, 2020, pp. 81–84; https://apps.who.int/iris/rest/bitstreams/1278712/retrieve
  • CIB and RC, Major uses of pesticides. Central Insecticide Board and Registration Committee, Department of Agriculture, Cooperation and Farmers Welfare, GoI, 2022; http://ppqs.gov.in/sites/default/files/major_use_of_pesticides_insecticides_as_on_31.05.2022.pdf (accessed on 30 January 2017).
  • Leary, J. B., Gas–liquid chromatographic determination of acephate and ortho 9006 residues in crops. J. Assoc. Off. Anal. Chem., 1974, 57, 189–191.
  • Magee, P. S., New aspects of organophosphorus pesticides: structure and bioactivity of orthene insecticide analogs. Residue Rev., 1974, 33, 3–18.
  • Tomlin, C. D. S., The Pesticide Manual: A World Compendium, British Crop Production Council, Alton, UK, 2009, 15th edn, pp. 196-197.
  • Tohnishi, M. et al., Flubendiamide, a novel insecticide highly active against lepidopterous insect pests. J. Pestic. Sci., 2005, 30, 354–360; https://doi.org/10.1584/jpestics.30.354.
  • European Food Safety Authority, Peer review report to the conclusion regarding the peer review of the pesticide risk assessment of the active substance flubendiamide. EFSA J., 2013, 11, 3298.
  • Anastassiades, M., Lehotay, S. J., Stajnbaher, D. and Frank, J. S., Fast and easy multi-residuemethod employing acetonitrile extraction/partitioning and ‘dispersive solid-phase extraction’ for the determination of pesticide residues in produce. J. AOAC Int., 2003, 86, 412–431; https://doi.org/10.1093/jaoac/86.2.412.
  • SANTE, Analytical quality control and method validation procedures for pesticide residues analysis in food and feed. The European Commission Document No. SANTE/2017/11813, 2017; https://www.eurlpesticides.eu/userfiles/file/EurlALL/SANTE_11813_2017- fin.pdf (accessed on 3 March 2017).
  • Dong, M. et al., Dissipation and safety evaluation of novaluron, pyriproxyfen, thiacloprid and tolfenpyrad residues in the citrus-field ecosystem. Food Chem., 2018, 269, 136–141; https://doi.org/10.1016/j.foodchem.2018.07.005.
  • Horwitz, W. and Albert, R., The Horwitz ratio (HorRat): a useful index of method performance concerning precision. J. AOAC Int., 2006, 89, 1095; https://doi.org/10.1093/jaoac/89.4.1095.
  • Hoskins, W. M., Mathematical treatment of the rate of loss of residues. FAO Plant Prot. Bull., 1961, 9, 163–168.
  • Handa, S. K., Agnihotri, N. P. and Kulshrestha, G., Maximum residue limits of pesticides. In Pesticide Residues Significance, Management and Analysis, Research Periodicals and Book Publishing House, Houston, USA, 1999, pp. 9–21.
  • Horwitz, W., Kamps, L. R. and Boyer, K. W., Quality assurance in the analysis of foods and trace constituents. J. AOAC Int., 1980, 63, 1344–1354.
  • Khan, M. A., Masood, Jagdishwar, R. D. and Venkateswara, R. S., Dissipation of dichlorvos and dimethoate residue in okra. Pestic. Res. J., 1999, 11, 204–206.
  • Sharma, B. N. and Parihar, N. S., Dissipation and persistence of dimethoate and ethion residues in/on chilli, Capsicum annuum (L.). Pestic. Res. J., 2013, 25, 80–82.
  • Waghulde, P. N., Khatik, M. K., Patil, V. T. and Patil, P. R., Persistence and dissipation of pesticides in chilly and okra at north Maharashtra region. Pestic. Res. J., 2014, 23, 23–26.
  • Khay, S., Choi, J. H. and Abd El-Aty, M. A., Dissipation behavior of lufenuron, benzoylphenylurea insecticide, in/on chinese cabbage applied by foliar spraying under greenhouse conditions. Bull. Environ. Contam. Toxicol., 2008, 81, 369–372; https://doi.org/10.1007/s00128-008-9490-x.
  • Antonious, G. F., Analysis and fate of acephate and its metabolite, methamidophos, in pepper and cucumber. J. Environ. Sci. Health – B, 1995, 30, 377–399; https://doi.org/10.1080/03601239509372944.
  • Leidy, R. B., Sheets, T. J. and Sorensan, K. A., Residues of acephate and methamidophos in greenhouse tomatoes. J. Am. Soc. Hortic. Sci., 1978, 103, 392.
  • Trevisan, L. R. P., Baptista, G. C. and Papa, G., Acephate and methamidophos residues in the greenhouse and in field grown tomatoes. Hortic. Bras., 2005, 23, 38–43; http://dx.doi.org/10.1590/S0102-05362005000100008.
  • Mohapatra, S., Manikrao, G., Siddamallaiah, L., Buddidhathi, R. and Matadha, N. Y., Dissipation of acephate and methamidophos residues on brinjal (Solanum melongena L.) and okra (Abelmoschus esculentus L.). Pol. J. Environ. Stud., 2017, 26, 1165–1172; https://doi.org/10.15244/pjoes/66178.
  • Aiswarya, K. K., Bio-efficacy, phytotoxicity and residues of emamectin benzoate 5 WSG against bollworms of cotton and fruit borers of okra. Ph.D. (Ag.) thesis, Tamil Nadu Agricultural University, Coimbatore, India, 2010, p. 224.
  • Jyot, G., Mandal, K., Chahil, G. S. and Singh, B., Persistence and risk assessment of emamectin benzoate residues on okra fruits and soil. Environ. Technol., 2014, 35, 1736–1743; https://doi.org/10.1080/09593330.2014.881420.
  • Singh, G., Chahil, G. S., Jyot, G., Battu R. S. and Singh, B., Degradation dynamics of emamectin benzoate on cabbage under subtropical conditions of Punjab, India. Bull. Environ. Contam. Toxicol., 2013, 91, 129–133; https://doi.org/10.1007/s00128-013-1013-8.
  • Das, S. K., Mukherjee, I. and Das, S. K., Dissipation of flubendiamide in/on okra Abelmoschus esculenta (L.) Moench fruits. Bull. Environ. Contam. Toxicol., 2012, 88, 381–384; https://doi.org/10.1007/s00128-011-0491-9.
  • Vemuri, S. B., Rao, C. S., Reddy, A. H. and Swarupa, S., Bio-efficacy and dissipation of newer molecules against whitefly in okra. Res. J. Pharm. Biol. Chem., 2014, 5, 434.
  • Paramasivam, M. and Banerjee, H., Persistence and dissipation of the insecticide flubendiamide and its metabolite des-iodo flubendiamide residues in tomato fruit and soil. Bull. Environ. Contam. Toxicol., 2012, 88, 344–348; https://doi.org/10.1007/s00128-011- 0461-2.
  • Mohapatra, S., Ahuja, A. K., Deepa, M., Sharma, D., Jagadish, G. K. and Rashmi, N., persistence and dissipation of flubendiamide and des-iodo flubendiamide in cabbage (Brassica oleracea Linne) and soil. Bull. Environ. Contam. Toxicol., 2010, 85, 352–356; https://doi.org/10.1007/s00128-010-0063-4.
  • Paramasivam, M., Selvi, C. and Chandrasekara, S., Persistence and dissipation of flubendiamide and its risk assessment on gherkin (Cucumis anguria L.). Environ. Monit. Assess., 2014, 186, 4881-4887; https://doi.org/10.1007/s10661-014-3745-2.
  • Sharma, K. K. et al., Residual behavior and risk assessment of flubendiamide on tomato at different agro-climatic conditions in India. Environ. Monit. Assess., 2014, 186, 7673–7682; https://doi.org/10.1007/s10661-014-3958-4.
  • Sharma, K. K. et al., Dissipation pattern and risk assessment of flubendiamide on chili at different agro-climatic conditions in India. Environ, Monit. Assess., 2015, 187, 245; https://doi.org/10.1007/s10661-015-4476-8.
  • Chinniah, C., Kuttalam, S., Santharama, G. and Rabindra, R. J., Dissipation of dimethoate residues on chillies. Pestic. Res. J., 2002, 12, 245–247.
  • Varghese, T. S., Mathew, T. B., George, T., Beevi, S. N. and Xavier, G., Dissipation study of dimethoate, ethion and oxydemeton methyl in chilli. Pestic. Res. J., 2011, 23, 68–73.
  • Pandey, S. A., Mishra, P. and Koshta, V. K., Dissipation of insecticides in okra fruits. J. Crop Weed, 2019, 15, 134–138.
  • Wang, L., Zhao, P., Zhang, F., Li, Y., Du, F. and Pan, C., Dissipation and residue behaviour of emamectin benzoate on apple and cabbage field application. Ecotoxicol. Environ. Saf., 2012, 78, 260– 264; https://doi.org/10.1016/j.ecoenv.2011.11.031.
  • Liu, S., Zhang, F., Wang, L. and Pan, C., Dissipation and residues of emamectin benzoate in cabbage. Bull. Environ. Contam. Toxicol., 2012, 89, 654–657; https://doi.org/10.1007/s00128-012-0729-1.
  • European Union Database, 2021; https://ec.europa.eu/food/plant/ pesticides/eu-pesticides-database/mrls/?event=search.pr (accessed on 30 May 2017).
  • Food Safety Standards Authority of India, Food Safety and Standards (Contaminants, Toxins and Residues) Regulations, 2011. Ministry of Health and Family Welfare, Government of India, 2022; https://www.fssai.gov.in/upload/uploadfiles/files/Compendium_ Contaminants_Regulations_20_08_2020.pdf (accessed on 30 May 2017).

Abstract Views: 117

PDF Views: 70




  • Dissipation and Degradation Kinetics of Commonly Used Pesticides and their Metabolites In/On Okra, Abelmoschus esculentus (L.) Moench

Abstract Views: 117  |  PDF Views: 70

Authors

C. Meenambigai
Department of Agricultural Entomology, Bidhan Chandra Krishi Viswavidyalaya, Nadia 741 252, India
K. Bhuvaneswari
Department of Agricultural Entomology, Tamil Nadu Agricultural University, Coimbatore 641 003, India

Abstract


Based on the dissipation pattern and degradation kinetics study of pesticides in okra, the average initial deposit of dimethoate and acephate was comparatively higher than emamectin benzoate and flubendiamide. Acephate residues persisted much longer, while, emamectin benzoate persisted for a shorter time. Acephate metabolized to methamidophos on 1 day after treatment. Desido flubendiamide residues were not detected. Okra being harvested on alternate days, following a pre-harvest interval of 24 days after acephate application, is not possible. Thus, usage of acephate at the flowering stage in okra poses the risk of residue detection in the harvested produce. Following a pre-harvest interval of 3–11 days after spraying dimethoate, emamectin benzoate and flubendiamide are mandatory for the safe consumption of okra.

Keywords


Acephate, Dissipation, Dimethoate, Emamectin Benzoate, Half-Life, Okra.

References





DOI: https://doi.org/10.18520/cs%2Fv124%2Fi4%2F442-450