Open Access Open Access  Restricted Access Subscription Access

Identification of Chemosensory Genes in the Greater Wax Moth, Galleria mellonella L. (Lepidoptera : Pyralidae)


Affiliations
1 Department of Biochemistry, Jain University, Bengaluru 560 069, India
2 Division of Crop Protection, ICAR-Indian Institute of Horticultural Research, Bengaluru 560 089, India
 

Olfaction, one of the most significant sensations influencing insect behaviour, has been an efficient target for pest management. In this study, we analysed the antennal transcriptome of the greater wax moth, Galleria mellonella L. which is a predominant honeybee pest and is now becoming a potential threat to the global honeybee industry. A de novo antennal RNA-sequence assembly resulted in 24,683 unigenes and identified 24 odorant-binding proteins, 62 odorant receptors, 4 ionotropic receptors and 2 sensory neuron membrane proteins. Additionally, seven antennal-binding proteins, six pheromone-binding proteins and seven general odorant-binding proteins were identified from G. mellonella. Phylogenetic analysis suggested majority of the genes be closely associated with orthologs from other lepidopteran species. The identification of candidate genes and functional annotation of the olfactory genes will facilitate future functional studies on chemoreception processes in this species and other lepidopterans. This study lays the groundwork for future research that might lead to cutting-edge approaches in pest management

Keywords

Chemosensory Genes, Galleria mellonella, Lepidopterans, Olfaction, Pest Management.
User
Notifications
Font Size

  • Leal, W. S., Odorant reception in insects: roles of receptors, binding proteins, and degrading enzymes. Annu. Rev. Entomol., 2013, 58, 373–391.
  • Carey, A. F. and Carlson, J. R., Insect olfaction from model systems to disease control. Proc. Natl. Acad. Sci. USA, 2011, 108, 12987–12995.
  • Vogt, R. G., Biochemical diversity of odor detection-14: OBPs, ODEs and SNMPs. In Insect Pheromone Biochemistry and Molecular Biology (eds Blomquist, G. J. and Vogt, R. G.), Elsevier, California, USA, 2003, pp. 391–445.
  • Xu, Y. L. et al., Large-scale identification of odorant-binding proteins and chemosensory proteins from expressed sequence tags in insects. BMC Genomics, 2009, 10, 632.
  • Zhang, J., Liu, Y., Walker, W. B., Dong, S. L. and Wang, G. R., Identification and localization of two sensory neuron membrane proteins from Spodoptera litura (Lepidoptera: Noctuidae). Insect Sci., 2015, 22, 399–408.
  • Crasto, C. J., Olfactory receptors. In Methods in Molecular Biology TM (ed. Walker, J. M.), Springer, New York, USA, 2013, vol. 1003, pp. 23–38.
  • Sánchez-Gracia, A., Vieira, F. G. and Rozas, J., Molecular evolution of the major chemosensory gene families in insects. Heredity, 2009, 103, 208–216.
  • Benton, R., Vannice, K. S., Gomez-Diaz, C. and Vosshall, L. B., Variant ionotropic glutamate receptors as chemosensory receptors in Drosophila. Cell, 2009, 136, 149–162.
  • Zhao, H. X. et al., Candidate chemosensory genes identified from the greater wax moth, Galleria mellonella, through a transcriptomic analysis. Sci. Rep., 2019, 9, 1–12.
  • Senthilan, P. R. et al., Drosophila auditory organ genes and genetic hearing defects. Cell, 2012, 150, 1042–1054.
  • Jiang, L. et al., Emergence of social cluster by collective pairwise encounters in Drosophila. Elife, 2020, 9, e51921.
  • Van Giesen, L. et al., Multimodal stimulus coding by a gustatory sensory neuron in Drosophila larvae. Nature Commun., 2016, 7, 10687.
  • Rogers, M. E., Sun, M., Lerner, M. R. and Vogt, R. G., Snmp-1, a novel membrane protein of olfactory neurons of the silk moth Antheraea polyphemus with homology to the CD36 family of membrane proteins. J. Biol. Chem., 1997, 272, 14792–14799.
  • Vogt, R. G. et al., The insect SNMP gene family. Insect Biochem. Mol. Biol., 2009, 39, 448–456.
  • Li, J., Ishii, T., Feinstein, P. and Mombaerts, P., Odorant receptor gene choice is reset by nuclear transfer from mouse olfactory sensory neurons. Nature, 2004, 428, 393–399.
  • Jin, X., Tal, S. H. and Smith, D. P., SNMP is a signaling component required for pheromone sensitivity in Drosophila. Proc. Natl. Acad. Sci. USA, 2008, 105, 10996–11001.
  • Dong, K. et al., RNAi-induced electrophysiological and behavioral changes reveal two pheromone binding proteins of Helicoverpa armigera involved in the perception of the main sex pheromone component Z11–16: Ald. J. Chem. Ecol., 2017, 43, 207–214.
  • Pelletier, J., Guidolin, A., Syed, Z., Cornel, A. J. and Leal, W. S., Knockdown of a mosquito odorant-binding protein involved in the sensitive detection of oviposition attractants. J. Chem. Ecol., 2010, 36, 245–248.
  • Garczynski, S. F. et al., Crispr/cas9 editing of the codling moth (Lepidoptera: Tortricidae) cpomor1 gene affects egg production and viability. J. Econ. Entomol., 2017, 110, 1847–1855.
  • Zhu, G. H. et al., CRISPR/Cas9 mediated gene knockout reveals a more important role of PBP1 than PBP2 in the perception of female sex pheromone components in Spodoptera litura. Insect Biochem. Mol. Biol., 2019, 115, 103244.
  • Kwadha, C. A., Ong’Amo, G. O., Ndegwa, P. N., Raina, S. K. and Fombong, A. T., The biology and control of the greater wax moth, Galleria mellonella. Insects, 2017, 8, 61.
  • Jafari, R., Goldasteh, S. and Afrogheh, S., Control of the wax moth Galleria mellonella L. (Lepidoptera: Pyralidae) by the male sterile technique (MST). Arch. Biol. Sci., 2010, 62, 309–313.
  • Roller, H., Biemann, K., Bjerke, J. S., Norgard, D. W. and McShan, W. H., Sex pheromones of pyralid moths-I. Isolation and identification of the sex-attractant of Galleria mellonella L. (greater waxmoth). Acta Entomol. Bohemoslov., 1968, 65, 208–211.
  • Leyrer, R. L. and Monroe, R. E., Isolation and identification of the scent of the moth, Galleria mellonella, and a revaluation of its sex pheromone. J. Insect Physiol., 1973, 19, 2267–2271.
  • Flint, H. M. and Merkle, J. R., Mating behavior, sex pheromone responses, and radiation sterilization of the greater wax moth (Lepidoptera: Pyralidae). J. Econ. Entomol., 1983, 76, 467–472.
  • Lebedeva, K. V., Vendilo, N. V., Ponomarev, V. L., Pletnev, V. A. and Mitroshin, D. B., Identification of pheromone of the greater wax moth Galleria mellonella from the different regions of Russia. IOB C WPRS Bull., 2002, 25, 1–5.
  • Svensson, G. P. et al., Identification, synthesis, and behavioral activity of 5,11-dimethylpentacosane, a novel sex pheromone component of the greater wax moth, Galleria mellonella (L.). J. Chem. Ecol., 2014, 40, 387–395.
  • Payne, T. L. and Finn, W. E., Pheromone receptor system in the females of the greater wax moth Galleria mellonella. J. Insect Physiol., 1977, 23, 879–881.
  • Li, Y. et al., Losing the arms race: greater wax moths sense but ignore bee alarm pheromones. Insects, 2019, 10, 81.
  • Jiang, X. C. et al., Identification of olfactory genes from the greater wax moth by antennal transcriptome analysis. Front. Physiol., 2021, 12, 663040.
  • Vyas, M., Pagadala Damodaram, K. J. and Krishnarao, G., Antennal transcriptome of the fruit-sucking moth Eudocima materna: identification of olfactory genes and preliminary evidence for RNA-editing events in odorant receptors. Genes, 2022, 13, 1207.
  • Krishnarao, G., Sujatha, A., Sunitha, P., Vyas, M. and Jayanthi, P. D. K., A transcriptomic approach reveals the molecular basis of prepupal diapause of red banded mango caterpillar, Deanolis sublimbalis. Curr. Sci., 2022, 123, 471–481.
  • Haas, B. J. et al., De novo transcript sequence reconstruction from RNA-seq using the Trinity platform for reference generation and analysis. Nature Protoc., 2013, 8, 1494–1512.
  • Buchfink, B., Xie, C. and Huson, D. H., Fast and sensitive protein alignment using DIAMOND. Nature, 2015, 12, 59–60.
  • Kumar, S., Stecher, G., Li, M., Knyaz, C. and Tamura, K., MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol., 2018, 35, 1547–1549.
  • Zhang, Y. Y. et al., Identification and sex expression profiles of olfactory-related genes in Mythimna loreyi based on antennal transcriptome analysis. J. Asia-Pac. Entomol., 2022, 25, 101934.
  • Rihani, K., Ferveur, J. F. and Briand, L., The 40-year mystery of insect odorant-binding proteins. Biomolecules, 2021, 11, 509.
  • Jia, X. J. et al., Antennal transcriptome and differential expression of olfactory genes in the yellow peach moth, Conogethes punctiferalis (Lepidoptera: Crambidae). Sci. Rep., 2016, 6, 29067.
  • Pelosi, P., Zhou, J. J., Ban, L. P. and Calvello, M., Soluble proteins in insect chemical communication. Cell. Mol. Life Sci., 2006, 63, 1658–1676.
  • Sun, J. S., Xiao, S. and Carlson, J. R., The diverse small proteins called odorant-binding proteins. Open Biol., 2018, 8, 180208.
  • Venthur, H. and Zhou, J. J., Odorant receptors and odorant-binding proteins as insect pest control targets: a comparative analysis. Front. Physiol., 2018, 9, 1163.
  • Durand, N., Pottier, M. A., Siaussat, D., Bozzolan, F., Maïbèche, M. and Chertemps, T., Glutathione-S-transferases in the olfactory organ of the noctuid moth Spodoptera littoralis, diversity and conservation of chemosensory clades. Front. Physiol., 2018, 9, 1283.
  • Zafar, Z., Fatima, S., Bhatti, M. F., Shah, F. A., Saud, Z. and Butt, T. M., Odorant binding proteins (OBPs) and odorant receptors (ORs) of Anopheles stephensi: identification and comparative insights. PLoS ONE, 2022, 17, 265896.
  • Zhou, J. J., Odorant-binding proteins in insects. Vitam. Horm., 2010, 83, 241–272.
  • He, P., Zhang, J., Liu, N. Y., Zhang, Y. N., Yang, K. and Dong, S. L., Distinct expression profiles and different functions of odorant binding proteins in Nilaparvata lugens Stal. PLoS ONE, 2011, 6, e28921.
  • Brito, N. F., Moreira, M. F. and Melo, A. C. A., A look inside odorant-binding proteins in insect chemoreception. J. Insect Physiol., 2016, 95, 51–65.
  • Cao, D. et al., Identification of candidate olfactory genes in Chilo suppressalis by antennal transcriptome analysis. Int. J. Biol. Sci., 2014, 10, 846–860.
  • Zhang, T., Coates, B. S., Ge, X., Bai, S., He, K. and Wang, Z., Male- and female-biased gene expression of olfactory-related genes in the antennae of Asian corn borer, Ostrinia furnacalis (Guenée) (Lepidoptera: Crambidae). PLoS ONE, 2015, 10, e0128550.
  • Yang, S., Cao, D., Wang, G. and Liu, Y., Identification of genes involved in chemoreception in Plutella xyllostella by antennal transcriptome analysis. Sci. Rep., 2017, 7, 11941.
  • Qiu, L. et al., Identification and phylogenetics of Spodoptera frugiperda chemosensory proteins based on antennal transcriptome data. Comp. Biochem. Physiol., Part D, 2020, 34, 100680.
  • Gong, D. P., Zhang, H. J., Zhao, P., Xia, Q. Y. and Xiang, Z. H., The odorant binding protein gene family from the genome of silkworm, Bombyx mori. BMC Genomics, 2009, 10, 332.
  • Vieira, F. G. and Rozas, J., Comparative genomics of the odorant-binding and chemosensory protein gene families across the arthropoda: origin and evolutionary history of the chemosensory system. Genome Biol. Evol., 2011, 3, 476–490.
  • Vogt, R. G., Große-Wilde, E. and Zhou, J. J., The lepidoptera odorant binding protein gene family: gene gain and loss within the GOBP/PBP complex of moths and butterflies. Insect Biochem. Mol. Biol., 2015, 62, 142–153.
  • Walker, W. B., Roy, A., Anderson, P., Schlyter, F., Hansson, B. S. and Larsson, M. C., Transcriptome analysis of gene families involved in chemosensory function in Spodoptera littoralis (Lepidoptera: Noctuidae). BMC Genomics, 2019, 20, 428.
  • Touhara, K. and Vosshall, L. B., Sensing odorants and pheromones with chemosensory receptors. Annu. Rev. Physiol., 2009, 71, 307–332.
  • Wicher, D., Tuning insect odorant receptors. Front. Cell. Neurosci., 2018, 12, 94.
  • Liu, Y., Gu, S., Zhang, Y., Guo, Y. and Wang, G., Candidate olfaction genes identified within the Helicoverpa armigera antennal transcriptome. PLoS ONE, 2012, 7, 48260.
  • Zhang, Y. N. et al., Differential expression patterns in chemosensory and non-chemosensory tissues of putative chemosensory genes identified by transcriptome analysis of insect pest the purple stem borer Sesamia inferens (Walker). PLoS ONE, 2013, 8, 69715.
  • Xiao, W., Yang, L., Xu, Z. and He, L., Transcriptomics and identification of candidate chemosensory genes in antennae of Conogethes punctiferalis (Lepidoptera: Crambidae). J. Asia-Pac. Entomol., 2016, 19, 911–920.
  • Tanaka, K. et al., Highly selective tuning of a silkworm olfactory receptor to a key mulberry leaf volatile. Curr. Biol., 2009, 19, 881–890.
  • Ai, M., Blais, S., Park, J. Y., Min, S., Neubert, T. A. and Suh, G. S. B., Ionotropic glutamate receptors IR64a and IR8a form a functional odorant receptor complex in vivo in Drosophila. J. Neurosci., 2013, 33, 10741–10749.
  • Rytz, R., Croset, V. and Benton, R., Ionotropic receptors (IRs): chemosensory ionotropic glutamate receptors in Drosophila and beyond. Insect Biochem. Mol. Biol., 2013, 43, 888–897.
  • Nichols, Z. and Vogt, R. G., The SNMP/CD36 gene family in Diptera, Hymenoptera and Coleoptera: Drosophila melanogaster, D. pseudoobscura, Anopheles gambiae, Aedes aegypti, Apis mellifera, and Tribolium castaneum. Insect Biochem. Mol. Biol., 2008, 38, 398–415.
  • Zhang, H. J. et al., A phylogenomics approach to characterizing sensory neuron membrane proteins (SNMPs) in Lepidoptera. Insect Biochem. Mol. Biol., 2020, 118, 103313.
  • Pregitzer, P., Greschista, M., Breer, H. and Krieger, J., The sensory neuron membrane protein SNMP1 contributes to the sensitivity of a pheromone detection system. Insect Mol. Biol., 2014, 23, 733–742.
  • Hull, J. J., Perera, O. P. and Snodgrass, G. L., Cloning and expression profiling of odorant-binding proteins in the tarnished plant bug, Lygus lineolaris. Insect Mol. Biol., 2014, 23, 78–97.

Abstract Views: 96

PDF Views: 70




  • Identification of Chemosensory Genes in the Greater Wax Moth, Galleria mellonella L. (Lepidoptera : Pyralidae)

Abstract Views: 96  |  PDF Views: 70

Authors

Saravan Kumar Parepally
Department of Biochemistry, Jain University, Bengaluru 560 069, India
Gandham Krishnarao
Division of Crop Protection, ICAR-Indian Institute of Horticultural Research, Bengaluru 560 089, India
Meenal Vyas
Division of Crop Protection, ICAR-Indian Institute of Horticultural Research, Bengaluru 560 089, India
S. D. Divija
Division of Crop Protection, ICAR-Indian Institute of Horticultural Research, Bengaluru 560 089, India
P. D. Kamala Jayanthi
Division of Crop Protection, ICAR-Indian Institute of Horticultural Research, Bengaluru 560 089, India

Abstract


Olfaction, one of the most significant sensations influencing insect behaviour, has been an efficient target for pest management. In this study, we analysed the antennal transcriptome of the greater wax moth, Galleria mellonella L. which is a predominant honeybee pest and is now becoming a potential threat to the global honeybee industry. A de novo antennal RNA-sequence assembly resulted in 24,683 unigenes and identified 24 odorant-binding proteins, 62 odorant receptors, 4 ionotropic receptors and 2 sensory neuron membrane proteins. Additionally, seven antennal-binding proteins, six pheromone-binding proteins and seven general odorant-binding proteins were identified from G. mellonella. Phylogenetic analysis suggested majority of the genes be closely associated with orthologs from other lepidopteran species. The identification of candidate genes and functional annotation of the olfactory genes will facilitate future functional studies on chemoreception processes in this species and other lepidopterans. This study lays the groundwork for future research that might lead to cutting-edge approaches in pest management

Keywords


Chemosensory Genes, Galleria mellonella, Lepidopterans, Olfaction, Pest Management.

References





DOI: https://doi.org/10.18520/cs%2Fv124%2Fi4%2F505-512