Open Access Open Access  Restricted Access Subscription Access

Calcium Carbonate Activated Biomass-Derived Carbon: Insights on Characterization and Adsorption


Affiliations
1 Department of Environmental Sciences, Tamil Nadu Agricultural University, Coimbatore 641 003, India., India
 

Activated carbon made from coconut (Cocos nucifera) shells has the potential to be a valuable source for removing pollutants from wastewater. Recently, the use of calcium carbonate to activate carbon materials derived from agricultural waste has been gaining attention as an effective method for adsorption in wastewater treatment. In the present study, we have analysed the structural and functional properties of activated coconut shell biochar. Results show that calcium carbonate-activated carbon had a maximum adsorption capacity of 40.35 mg g–1 after 3 h of equilibrium when tested with 20 mg l–1 of malachite dye. The R2 value for this activated carbon was 0.822, and the best-fit model was determined to be pseudo-second-order kinetics, with intraparticle diffusion being the final rate-limiting step

Keywords

Agricultural Waste, Calcium Carbonate Acti-Vation, Coconut Shell, Wastewater Treatment.
User
Notifications
Font Size

  • Putro, J. N., Ju, Y.-H., Soetaredjo, F. E., Santoso, S. P. and Ismadji, S., In Biosorption of Dyes, Elsevier, 2021, pp. 99–133; https://doi. org.10.1016/B978-0-012-817-742-6.00004-9.
  • Sadiq, A. C., Rahim, N. Y. and Suah, F. B. M., Adsorption and desorption of malachite green by using chitosan–deep eutectic solvents beads. Int. J. Biol. Macromol., 2020, 164, 3965–3973; doi: 10.1016/j.ijbiomac.2020.09.029.
  • Man, L. W., Kumar, P., Teng, T. T. and Wasewar, K. L., Design of experiments for malachite green dye removal from wastewater using thermolysis – coagulation–flocculation. Desalin. Water Treat., 2012, 40(1–6), 260–271; doi:10.1080/19443994.2012.671257.
  • Mourão, P. A. M., Laginhas, C., Custódio, F., Nabais, J. M. V., Carrott, P. J. M. and Carrott, M. M. L. R., Influence of oxidation process on the adsorption capacity of activated carbons from lignocellulosic precursors. Fuel Process. Technol., 2011, 92(2), 241–246; doi:10.1016/j.fuproc.2010.04.013.
  • Kuzniatsova, T. A., Mottern, M. L., Chiu, W. V., Kim, Y., Dutta, P. K. and Verweij, H., Synthesis of thin, oriented zeolite A membranes on a macroporous support. Adv. Funct. Mater., 2008, 18(6), 952–958; doi:10.1002/adfm.200701001.
  • Piriya, R. S., Jayabalakrishnan, R. M., Maheswari, M., Boomiraj, K. and Oumabady, S., Comparative adsorption study of malachite green dye on acid-activated carbon. Int. J. Environ. Anal. Chem., 2020, 1–15; doi:10.1080/03067319.2020.1849667.
  • Obeng, G. Y., Amoah, D. Y., Opoku, R., Sekyere, C. K. K., Adjei, E. A. and Mensah, E., Coconut wastes as bioresource for sustainable energy: quantifying wastes, calorific values and emissions in Ghana. Energies, 2020, 13(9), 2178; doi:10.3390/en13092178.
  • Kabir Ahmad, R., Anwar Sulaiman, S., Yusup, S., Sham Dol, S., Inayat, M. and Aminu Umar, H., Exploring the potential of coconut shell biomass for charcoal production. Ain Shams Eng. J., 2022, 13(1), 101499; doi:10.1016/j.asej.2021.05.013.
  • Kovács, K. L. et al., Improvement of biogas production by bioaug-mentation. Biomed. Res. Int., 2013, 2013; doi:10.1155/2013/482653.
  • Oumabady, S. et al., Application of sludge-derived KOH-activated hydrochar in the adsorptive removal of orthophosphate. RSC Adv., 2021, 11(12), 6535–6543.
  • Choudhary, M., Kumar, R. and Neogi, S., Activated biochar derived from Opuntia ficus-indica for the efficient adsorption of malachite green dye, Cu +2 and Ni +2 from water. J. Hazard. Mater., 2020, 392, 122441; doi:10.1016/j.jhazmat.2020.122441.
  • Ekpete, O. A., Harcourt, P., Chemistry, I. and Harcourt, P., Kinetic sorption study of phenol onto activated carbon derived from fluted pumpkin stem waste (Telfairia occidentalis Hook F). ARPN J. Eng. Appl. Sci., 2011, 6, 43–49.
  • Xiao, K., Liu, H., Li, Y., Yang, G., Wang, Y. and Yao, H., Excel-lent performance of porous carbon from urea-assisted hydrochar of orange peel for toluene and iodine adsorption. Chem. Eng. J., 2020, 382, 122997; doi:10.1016/j.cej.2019.122997.
  • Karthikeyan, S. and Sivakumar, P., The effect of activating agents on the activated carbon prepared from Feronia limonia (L.) swingle (wood apple) shell. J. Environ. Nanotechnol., 2012, 1(1), 05–12; doi:10.13074/jent.2012.10.121009.
  • Thanarasu, A., Periyasamy, K., Manickam Periyaraman, P., Devaraj, T., Velayutham, K. and Subramanian, S., Comparative studies on adsorption of dye and heavy metal ions from effluents using eco-friendly adsorbent. In Materials Today: Proceeding, Elsevier, 2019, pp. 775–781; doi:10.1016/j.matpr.2020.07.001.
  • Kuzniatsova, T. A., Mottern, M. L., Chiu, W. V., Kim, Y., Dutta, P. K. and Verweij, H., Synthesis of thin, oriented zeolite A membranes on a macroporous support. Adv. Funct. Mater., 2008, 18(6), 952–958; doi:10.1002/adfm.200701001.
  • Hijab, M., Saleem, J., Parthasarathy, P., Mackey, H. R. and McKay, G., Two-stage optimisation for malachite green removal using activated date pits. Biomass Convers. Biorefin., 2020; doi:10. 1007/s13399-020-00813-y.
  • Devens, K. U., Neto, S. P., Oliveira, D. L. D. A. and Gonçalves, M. S., Characterization of biochar from green coconut shell and orange peel wastes. Rev. Virtual Quim., 2018, 10(2), 288–294; doi:10. 21577/1984-6835.20180022.
  • Ekpete, O. A., Marcus, A. C. and Osi, V., Preparation and characte-rization of activated carbon obtained from plantain (Musa paradi-siaca) fruit stem. J. Chem., 2017; doi:10.1155/2017/8635615.
  • Yorgun, S., Yıldız, D. and Şimşek, Y. E., Activated carbon from Paulownia wood: yields of chemical activation stages. Energy Sources, Part A, 2016, 38(14), 2035–2042; doi:10.1080/15567-036.2015.1030477.
  • Mozammel, H. M., Masahiro, O. and Bhattacharya, S. C., Activated charcoal from coconut shell using ZnCl2 activation. Biomass Bioenergy, 2002, 22(5), 397–400; doi:10.1016/S0961-9534(02)-00015-6.
  • Zawadzki, J., Azambre, B., Heintz, O., Krztoń, A. and Weber, J., IR study of the adsorption and decomposition of methanol on carbon surfaces and carbon-supported catalysts. Carbon NY, 2000, 38(4), 509–515; doi:10.1016/S0008-6223(99)00130-X.
  • Mohan, D. and Singh, K. P., Single- and multi-component adsorption of cadmium and zinc using activated carbon derived from bagasse – an agricultural waste. Water Res., 2002, 36(9), 2304–2318; doi:10. 1016/S0043-1354(01)00447-X.
  • Al-Musawi, T. J., Arghavan, S. M. A., Allahyari, E., Arghavan, F. S., Othmani, A. and Nasseh, N., Adsorption of malachite green dye onto almond peel waste: a study focusing on application of the ANN approach for optimization of the effect of environmental para-meters. Biomass Convers. Biorefin., 2022, 1, 1–12; doi:10.1007/ s13399-021-02174-6.
  • Dahri, M. K., Kooh, M. R. R. and Lim, L. B. L., Water remediation using low cost adsorbent walnut shell for removal of malachite green: equilibrium, kinetics, thermodynamic and regeneration stu-dies. J. Environ. Chem. Eng., 2014, 2(3), 1434–1444; doi:10.1016/ j.jece.2014.07.008.
  • Hamzezadeh, A., Rashtbari, Y., Afshin, S., Morovati, M. and Vosoughi, M., Application of low-cost material for adsorption of dye from aqueous solution. Int. J. Environ. Anal. Chem., 2020; doi:10.1080/03067319.2020.1720011.
  • Sartape, A. S., Mandhare, A. M., Jadhav, V. V., Raut, P. D., Anuse, M. A. and Kolekar, S. S., Removal of malachite green dye from aqueous solution with adsorption technique using Limonia acidissima (wood apple) shell as low cost adsorbent. Arab. J. Chem., 2017, 10, S3229–S3238; doi:10.1016/j.arabjc.2013.12.019.
  • Gupta, N., Kushwaha, A. K. and Chattopadhyaya, M. C., Application of potato (Solanum tuberosum) plant wastes for the removal of methylene blue and malachite green dye from aqueous solution. Arab. J. Chem., 2016, 9, S707–S716; doi:10.1016/j.arabjc.2011.07. 021.
  • Boudrahem, F., Aissani-Benissad, F. and Aït-Amar, H., Batch sorption dynamics and equilibrium for the removal of lead ions from aqueous phase using activated carbon developed from coffee residue activated with zinc chloride. J. Environ. Manage., 2009, 90(10), 3031–3039; doi:10.1016/j.jenvman.2009.04.005.
  • Guo, S. et al., Effects of CO2 activation on porous structures of coconut shell-based activated carbons. Appl. Surf. Sci., 2009, 255(20), 8443–8449; doi:10.1016/j.apsusc.2009.05.150.
  • Tan, I. A. W., Ahmad, A. L. and Hameed, B. H., Preparation of acti-vated carbon from coconut husk: optimization study on removal of 2,4,6-trichlorophenol using response surface methodology. J. Hazard. Mater., 2008, 153(1–2), 709–717; doi:10.1016/j.jhazmat.2007.09. 014.
  • Chatterjee, R. et al., Effect of pyrolysis temperature on physicoche-mical properties and acoustic-based amination of biochar for efficient CO2 adsorption. Front. Energy Res., 2020, 8, 85; doi:10. 3389/fenrg.2020.00085.
  • Brennan Pecha, M., Arbelaez, J. I. M., Garcia-Perez, M., Chejne, F. and Ciesielski, P. N., Progress in understanding the four dominant intra-particle phenomena of lignocellulose pyrolysis: chemical rea-ctions, heat transfer, mass transfer, and phase change. Green Chem., 2019, 21(11), 2868–2898; doi:10.1039/c9gc00585d.
  • Castro, J. P. et al., Massaranduba sawdust: a potential source of charcoal and activated carbon. Polymers (Basel), 2019, 11(8); doi:10.3390/polym11081276.
  • Al-Musawi, T. J., Mahvi, A. H., Khatibi, A. D. and Balarak, D., Effective adsorption of ciprofloxacin antibiotic using powdered activated carbon magnetized by iron(III) oxide magnetic nanopar-ticles. J. Porous Mater., 2021, 28(3), 835–852; doi:10.1007/s10934-021-01039-7.
  • Bello, O. S., Moshood, M. A., Ewetumo, B. A. and Afolabi, I. C., Ibuprofen removal using coconut husk activated biomass. Chem. Data Collect., 2020, 29, 100533; doi:10.1016/j.cdc.2020.100533.
  • Afshin, S. et al., Removal of basic blue-41 dye from water by stabilized magnetic iron nanoparticles on clinoptilolite zeolite. Rev. Chim., 2020, 71(2), 218–229; doi:10.37358/RC.20.2.7919.
  • Alipour, M. et al., Optimising the basic violet 16 adsorption from aqueous solutions by magnetic graphene oxide using the response surface model based on the Box–Behnken design. Int. J. Environ. Anal. Chem., 2019, 101, 758–777; doi:10.1080/03067319.2019. 1671378.
  • Pavan, F. A., Camacho, E. S., Lima, E. C., Dotto, G. L., Branco, V. T. A. and Dias, S. L. P., Formosa papaya seed powder (FPSP): pre-paration, characterization and application as an alternative adsor-bent for the removal of crystal violet from aqueous phase. J. Environ. Chem. Eng., 2014, 2(1), 230–238; doi:10.1016/j.jece.2013.12.017.
  • Pan, S. Y., Syu, W. J., Chang, T. K. and Lee, C. H., A multiple model approach for evaluating the performance of time-lapse capsules in trapping heavy metals from water bodies. RSC Adv., 2020, 10(28), 16490–16501; doi:10.1039/d0ra03017a.
  • Sevim, F., Lacin, O., Ediz, E. F. and Demir, F., Adsorption capacity, isotherm, kinetic and thermodynamic studies on adsorption behavior of malachite green onto natural red clay. Environ. Prog. Sustain. Energy, 2020, 40, e13471; doi:10.1002/ep.13471.
  • Xing, Y. and Wang, G., Poly(methacrylic acid)-modified sugarcane bagasse for enhanced adsorption of cationic dye. Environ. Technol., 2009, 30(6), 611–619; doi:10.1080/09593330902838098.

Abstract Views: 255

PDF Views: 113




  • Calcium Carbonate Activated Biomass-Derived Carbon: Insights on Characterization and Adsorption

Abstract Views: 255  |  PDF Views: 113

Authors

R. Sangeetha Piriya
Department of Environmental Sciences, Tamil Nadu Agricultural University, Coimbatore 641 003, India., India
Rajamani M. Jayabalakrishnan
Department of Environmental Sciences, Tamil Nadu Agricultural University, Coimbatore 641 003, India., India
M. Maheswari
Department of Environmental Sciences, Tamil Nadu Agricultural University, Coimbatore 641 003, India., India
Kovilpillai Boomiraj
Department of Environmental Sciences, Tamil Nadu Agricultural University, Coimbatore 641 003, India., India
Sadish Oumabady
Department of Environmental Sciences, Tamil Nadu Agricultural University, Coimbatore 641 003, India., India

Abstract


Activated carbon made from coconut (Cocos nucifera) shells has the potential to be a valuable source for removing pollutants from wastewater. Recently, the use of calcium carbonate to activate carbon materials derived from agricultural waste has been gaining attention as an effective method for adsorption in wastewater treatment. In the present study, we have analysed the structural and functional properties of activated coconut shell biochar. Results show that calcium carbonate-activated carbon had a maximum adsorption capacity of 40.35 mg g–1 after 3 h of equilibrium when tested with 20 mg l–1 of malachite dye. The R2 value for this activated carbon was 0.822, and the best-fit model was determined to be pseudo-second-order kinetics, with intraparticle diffusion being the final rate-limiting step

Keywords


Agricultural Waste, Calcium Carbonate Acti-Vation, Coconut Shell, Wastewater Treatment.

References





DOI: https://doi.org/10.18520/cs%2Fv124%2Fi10%2F1167-1174