Open Access Open Access  Restricted Access Subscription Access

Influence of Supplementary Cementitious Materials on Transport Properties of Concrete And Interfacial Transition Zone


Affiliations
1 Department of Civil Engineering, Indian Institute of Technology, Gandhinagar 382 355, India., India
 

Transport properties of concrete directly affect durability. A good comprehension of different transport properties and the role of supplementary cementitious materials (SCMs) will help in improving concrete quality. This article presents a brief review of the role of SCMs in concrete, transport mechanisms and their correlation with durability. The progress of research on transport properties like water penetration, sorption, electrical resistivity, chloride ingress, etc. with the partial replacement of different blenders is reviewed. The article also briefly examines the influence of SCMs on the interfacial transition zone (ITZ) and the link between ITZ and overall transport properties.

Keywords

Concrete, Durability, ITZ, Supplementary Cementitious Materials, Transport Properties.
User
Notifications
Font Size

  • Shekarchi, M., Bonakdar, A., Bakhshi, M., Mirdamadi, A. and Mobasher, B., Transport properties in metakaolin blended concrete. Constr. Build. Mater., 2010, 24, 2217–2223.
  • Shekarchi, M. and Moradi, F., Concrete durability issues in the Persian Gulf. In CBM-CI International Workshop, Karachi, Pakistan, 2007, pp. 357–370.
  • Mehta, P. K., Concrete in the Marine Environment, CRC Press, London, 1991, pp. 1–15.
  • Ahmadi, B., Sobhani, J., Shekarchi, M. and Najimi, M., Transport properties of ternary concrete mixtures containing natural zeolite with silica fume or fly ash. Mag. Concr. Res., 2014, 66, 150–158.
  • Claisse, P. A., Transport Properties of Concrete: Measurements and Applications, Woodhead Publishing, an imprint of Elsevier, Cambridge, UK, 2014, pp. 219–234.
  • Stefanoni, M., Angst, U. and Elsener, B., Corrosion rate of carbon steel in carbonated concrete – a critical review. Cem. Concr. Res., 2018, 103, 35–48.
  • Troconis de Rincón, O., Torres-Acosta, A., Sagüés, A. and Martinez-Madrid, M., Galvanic anodes for reinforced concrete structures: a review. Corrosion, 2018, 74, 715–723.
  • Liew, J. Y. R., Xiong, M.-X. and Lai, B.-L., Design of Steel–Concrete Composite Structures using High-Strength Materials, Woodhead Publishing, Duxford, UK, 2021, pp. 13–20.
  • Villagrán-Zaccardi, Y., Alderete, N., Pico-Cortés, C., Zega, C., Risdanareni, P. and De Belie, N., Effect of wastes as supplementary cementitious materials on the transport properties of concrete. In Woodhead Publishing Series in Civil and Structural Engineering (eds de Brito, J. et al.), Woodhead Publishing, Duxford, UK, 2021, pp. 191–227.
  • Zaccardi, Y. A. V., Di Maio, Á. A. and Romagnoli, R., The effect of slag and limestone filler on resistivity, sorptivity, and permeability of concrete with low paste content. MRS Online Proc. Libr., 2012, 1488, 127–133.
  • BHRC NO. S-428, National Code of Practice for Concrete Durability in the Persian Gulf and Omman Sea, 2005.
  • Ravichandran, D., Prem, P. R., Kaliyavaradhan, S. K. and Ambily, P. S., Influence of fibers on fresh and hardened properties of ultra high performance concrete (UHPC) – a review. J. Build. Eng., 2022, 57, 104922.
  • CSA A3001, Canadian Standards Association, Cementitious Materi-als for Use in Concrete, Canadian Standards Association, Toronto, 2018.
  • Fantilli, A. P. and Jóźwiak-Niedźwiedzka, D., Special issue: supple-mentary cementitious materials in concrete, Part I. Materials (Basel), 2021, 14, 2291.
  • Thomas, M., Supplementary Cementing Materials in Concrete, CRC Press, Boca Raton, 2013, pp. 31–43.
  • Lollini, F., Redaelli, E. and Bertolini, L., A study on the applicability of the efficiency factor of supplementary cementitious materials to durability properties. Constr. Build. Mater., 2016, 120, 284– 292.
  • Martinez, C. M., del Bosque, I. F. S., Medina, G., Frías, M. and de Rojas, M. I. S., Fillers and additions from industrial waste for recycled aggregate concrete. Struct. Integr. Recycl. Aggreg. Concr. Prod. with Fill. Pozzolans, Woodhead Publishing, an imprint of Elsevier, Duxford, UK, 2021, pp. 105–143.
  • Xuan, D. X., Shui, Z. H. and Wu, S. P., Influence of silica fume on the interfacial bond between aggregate and matrix in near-surface layer of concrete. Constr. Build. Mater., 2009, 23, 2631–2635.
  • Elahi, M. M. A. et al., Improving the sulfate attack resistance of concrete by using supplementary cementitious materials (SCMs): a review. Constr. Build. Mater., 2021, 281, 122628.
  • Song, X., Li, C., Chen, D. and Gu, X., Interfacial mechanical pro-perties of recycled aggregate concrete reinforced by nano-mate-rials. Constr. Build. Mater., 2021, 270, 121446.
  • Abhilash, P. P., Nayak, D. K., Sangoju, B., Kumar, R. and Kumar, V., Effect of nano-silica in concrete; a review. Constr. Build. Mater., 2021, 278, 122347.
  • El Mir, A. I., Vági, I., Sinka, Z. and Nehme, S. G., Properties of ultra high performance concrete made utilizing supplementary cementitious materials. In Eleventh High Performance Concrete (11th HPC) and the Second Concrete Innovation Conference (2nd CIC) in Tromsø, 6–8 March 2017, pp. 978–982.
  • Ramezanianpour, A. A., Mortezaei, M. and Mirvalad, S., Synergic effect of nano-silica and natural pozzolans on transport and mecha-nical properties of blended cement mortars. J. Build. Eng., 2021, 44, 102667.
  • Li, G. et al., Fly ash application as supplementary cementitious material: a review. Materials (Basel), 2022, 15, 2664.
  • Snellings, R., Mertens, G. and Elsen, J., Supplementary cementi-tious materials. Rev. Mineral. Geochem., 2012, 74, 211–278.
  • Skibsted, J. and Snellings, R., Reactivity of supplementary cemen-titious materials (SCMs) in cement blends. Cem. Concr. Res., 2019, 124, 105799.
  • Panesar, D. K. and Zhang, R., Performance comparison of cement-replacing materials in concrete: limestone fillers and supplementary cementing materials – a review. Constr. Build. Mater., 2020, 251, 118866.
  • Sakir, S., Raman, S. N., Safiuddin, M., Kaish, A. B. M. A. and Mutalib, A. A., Utilization of by-products and wastes as supple-mentary cementitious materials in structural mortar for sustainable construction. Sustainability, 2020, 12, 3888.
  • Walker, R. and Pavía, S., Physical properties and reactivity of pozzolans, and their influence on the properties of lime–pozzolan pastes. Mater. Struct., 2011, 44, 1139–1150.
  • Quercia, G., Hüsken, G. and Brouwers, H. J. H., Water demand of amorphous nano silica and its impact on the workability of cement paste. Cem. Concr. Res., 2012, 42, 344–357.
  • Liu, S., Zhang, T., Guo, Y., Wei, J. and Yu, Q., Effects of SCM particles on the compressive strength of micro-structurally designed cement paste: inherent characteristic effect, particle size refinement effect, and hydration effect. Powder Technol., 2018, 330, 1–11.
  • Lavergne, F., Belhadi, R., Carriat, J. and Fraj, A. B., Effect of nano-silica particles on the hydration, the rheology and the strength development of a blended cement paste. Cem. Concr. Compos., 2019, 95, 42–55.
  • Durdziński, P. T., Dunant, C. F., Haha, M. Ben and Scrivener, K. L., A new quantification method based on SEM-EDS to assess fly ash composition and study the reaction of its individual compo-nents in hydrating cement paste. Cem. Concr. Res., 2015, 73, 111– 122.
  • Durdziński, P. T., Snellings, R., Dunant, C. F., Haha, M. Ben and Scrivener, K. L., Fly ash as an assemblage of model Ca–Mg–Na-aluminosilicate glasses. Cem. Concr. Res., 2015, 78, 263–272.
  • Layssi, H., Ghods, P., Alizadeh, A. R. and Salehi, M., Electrical resistivity of concrete. Concr. Int., 2015, 37, 41–46.
  • Polder, R. B. and Peelen, W. H. A., Characterisation of chloride transport and reinforcement corrosion in concrete under cyclic wetting and drying by electrical resistivity. Cem. Concr. Compos., 2002, 24, 427–435.
  • Bremner, T. et al., Protection of metals in concrete against corrosion. In Technical Report for American Concrete Institute (ACI) Committee 222, Farmington Hills, MI, USA, 2001.
  • Wu, K., Shi, H., Xu, L., Ye, G. and De Schutter, G., Microstructural characterization of ITZ in blended cement concretes and its relation to transport properties. Cem. Concr. Res., 2016, 79, 243–256.
  • Ghafoori, N., Spitek, R. and Najimi, M., Influence of limestone size and content on transport properties of self-consolidating concrete. Constr. Build. Mater., 2016, 127, 588–595.
  • Lizarazo-Marriaga, J. and Lopez Yepez, L. G., Effect of silica fume addition on the chloride-related transport properties of high-perfor-mance concrete. DYNA, 2012, 79, 105–110.
  • ACI CT-18, ACI concrete terminology approved by ACI Technical Activities Committee, Farmington Hills, MI, ACI, 2018.
  • von Greve-Dierfeld, S. et al., Understanding the carbonation of concrete with supplementary cementitious materials: a critical review by RILEM TC 281-CCC. Mater. Struct., 2020, 53, 136.
  • Dullien, F. A. L., Porous Media: Fluid Transport and Pore Structure, Academic Press, San Diago, California, 2012, pp. 237–313.
  • Badogiannis, E. and Tsivilis, S., Exploitation of poor Greek kaolins: durability of metakaolin concrete. Cem. Concr. Compos., 2009, 31, 128–133.
  • Menéndez, G., in Memorias de las Jornadas Tecnológicas sobre Corrosión de Armaduras en Estructuras de Hormigón. AATH, Mar del Plata, Argentina, 2002, pp. 96–109.
  • Menéndez, G., Bonavetti, V. and Irassar, E. F., Strength development of ternary blended cement with limestone filler and blast-furnace slag. Cem. Concr. Compos., 2003, 25, 61–67.
  • Bonavetti, V. L., Irassar, E. F., Menéndez, G., Carrasco, M. F. and Donza, H., Durabilidad de hormigones elaborados con cementos binarios y ternarios. El Hormigón Estructural y el Transcurso del Tiempo. In Simposio Federation International de Beton, La plata, Argentina, 2005, pp. 201–208.
  • Özbay, E., Erdemir, M. and Durmuş, H. İ., Utilization and efficiency of ground granulated blast furnace slag on concrete properties – a review. Constr. Build. Mater., 2016, 105, 423–434.
  • Kopecskó, K. and Balázs, G. L., Concrete with improved chloride binding and chloride resistivity by blended cements. Adv. Mater. Sci. Eng., 2017, 2017, 1–13.
  • Yuksel, I., Blast-furnace slag. In Waste and Supplementary Cemen-titious Materials in Concrete, Elsevier, Duxford, UK, 2018, pp. 361–415.
  • Irassar, E. F., Sulfate attack on cementitious materials containing limestone filler – a review. Cem. Concr. Res., 2009, 39, 241–254.
  • Ramezanianpour, A. A., Ghiasvand, E., Nickseresht, I., Mahdikhani, M. and Moodi, F., Influence of various amounts of limestone powder on performance of Portland limestone cement concretes. Cem. Concr. Compos., 2009, 31, 715–720.
  • Hall, C., Water sorptivity of mortars and concretes: a review. Mag. Concr. Res., 1989, 41, 51–61.
  • Castro, J., Bentz, D. and Weiss, J., Effect of sample conditioning on the water absorption of concrete. Cem. Concr. Compos., 2011, 33, 805–813.
  • Courard, L., Darimont, A., Schouterden, M., Ferauche, F., Willem, X. and Degeimbre, R., Durability of mortars modified with metakaolin. Cem. Concr. Res., 2003, 33, 1473–1479.
  • Khatib, J. M. and Clay, R. M., Absorption characteristics of meta-kaolin concrete. Cem. Concr. Res., 2004, 34, 19–29.
  • De Schutter, Geert and Katrien Audenaert (eds), Report 38: Durabil-ity of self-compacting concrete state-of-the-art report of RILEM Technical Committee 205-DSC, RILEM Publications, 2007, vol. 38.
  • Fantilli, A. P., Tondolo, F., Chiaia, B. and Habert, G., Designing reinforced concrete beams containing supplementary cementitious materials. Materials (Basel), 2019, 12, 1248.
  • Rasheeduzzafar, D. F. H., Bader, M. A. and Khan, M. M., Perfor-mance of corrosion resisting steels in chloride-bearing concrete. ACI Mater. J., 1992, 89, 439–448.
  • Thomas, M. D. A., Pantazopoulou, S. J. and Martin-Perez, B., Service life modelling of reinforced concrete structures exposed to chlorides – a literature review. Prepared for the Ministry of Transportation, Ontario at University of Toronto, Canada, 1995.
  • Midgley, H. G. and Illston, J. M., The penetration of chlorides into hardened cement pastes. Cem. Concr. Res., 1984, 14, 546–558.
  • Hansson, C. M. and Sørensen, B., The threshold concentration of chloride in concrete for the initiation of reinforcement corrosion. In Corrosion Rates of Steel in Concrete, ASTM International, Philadelphia, 1990, pp. 3–16.
  • Standard, A., C1202. Standard Test Method for Electrical Indication of Concrete’s Ability to Resist Chloride Ion Penetration. ASTM International West Conshohocken, Pennsylvania, 2012.
  • Bamforth, P. B., Improving the durability of concrete using mineral admixtures. Concr. Durab. Arab. Gulf, 1995, 1, 1–26.
  • Zhang, M. H. and Malhotra, V. M., Characteristics of a thermally activated alumino-silicate pozzolanic material and its use in concrete. Cem. Concr. Res., 1995, 25, 1713–1725.
  • Boddy, A., Hooton, R. D. and Gruber, K. A., Long-term testing of the chloride-penetration resistance of concrete containing high-reacti-vity metakaolin. Cem. Concr. Res., 2001, 31, 759–765.
  • Coleman, N. J., Metakaolin as a cement extender. University of Aston in Birmingham, UK, 1996.
  • Cao, Y. and Detwiler, R. J., Backscattered electron imaging of cement pastes cured at elevated temperatures. Cem. Concr. Res., 1995, 25, 627–638.
  • Wong, H. S., Zobel, M., Buenfeld, N. R. and Zimmerman, R. W., Influence of the interfacial transition zone and microcracking on the diffusivity, permeability and sorptivity of cement-based materials after drying. Mag. Concr. Res., 2009, 61, 571–589.
  • Gao, S., Guo, J., Gong, Y., Ban, S. and Liu, A., Study on the pene-tration and diffusion of chloride ions in interface transition zone of recycled concrete prepared by modified recycled coarse aggregates. Case Stud. Constr. Mater., 2022, 16, e01034.
  • Akçaoğlu, T., Tokyay, M. and Çelik, T., Assessing the ITZ micro-cracking via scanning electron microscope and its effect on the failure behavior of concrete. Cem. Concr. Res., 2005, 35, 358–363.
  • Erdem, S., Dawson, A. R. and Thom, N. H., Influence of the micro-and nanoscale local mechanical properties of the interfacial transi-tion zone on impact behavior of concrete made with different aggregates. Cem. Concr. Res., 2012, 42, 447–458.
  • Alanazi, H., Study of the interfacial transition zone characteristics of geopolymer and conventional concretes. Gels, 2022, 8, 105.
  • Rossignolo, J. A., Interfacial interactions in concretes with silica fume and SBR latex. Constr. Build. Mater., 2009, 23, 817–821.
  • Farran, J., Contribution mineralogique a l’etude de l’adhernce entre les constituants hydrates des ciments et les materiaux associes. Dr. es Sci. Univ. Toulouse, Pevue des Mateiaux Constr., Doctoral Thesis, Univesity of Toulouse, France, 1956.
  • Watson, A. J. and Oyeka, C. C., Discussion: oil permeability of harde-ned cement pastes and concretes. Mag. Concr. Res., 1982, 34, 95.
  • Houst, Y., Sadouki, H. and Wittmann, F., Influence of aggregate concentration on the diffusion of CO2 and O2. In Interfaces in Cementitious Composites, E&F SPON, London, 1993, pp. 279–288.
  • Carcasses, M., Petit, J. Y. and Ollivier, J. P., Gas permeability of mortars in relation with the microstructure of interfacial transition zone (ITZ). In RILEM Proceedings, 1998, pp. 85–92.
  • Asbridge, A. H., Chadbourn, G. A. and Page, C. L., Effects of metakaolin and the interfacial transition zone on the diffusion of chloride ions through cement mortars. Cem. Concr. Res., 2001, 31, 1567–1572.
  • Sun, D., Wu, K., Shi, H., Zhang, L. and Zhang, L., Effect of inter-facial transition zone on the transport of sulfate ions in concrete. Constr. Build. Mater., 2018, 192, 28–37.
  • Zheng, J., Wong, H. S. and Buenfeld, N. R., Assessing the influ-ence of ITZ on the steady-state chloride diffusivity of concrete using a numerical model. Cem. Concr. Res., 2009, 39, 805–813.
  • Hornain, H., Marchand, J., Duhot, V. and Moranville-Regourd, M., Diffusion of chloride ions in limestone filler blended cement pastes and mortars. Cem. Concr. Res., 1995, 25, 1667–1678.
  • Delagrave, A., Bigas, J. P., Ollivier, J. P., Marchand, J. and Pigeon, M., Influence of the interfacial zone on the chloride diffusivity of mortars. Adv. Cem. Based Mater., 1997, 5, 86–92.
  • Rangaraju, P. R., Olek, J. and Diamond, S., An investigation into the influence of inter-aggregate spacing and the extent of the ITZ on properties of Portland cement concretes. Cem. Concr. Res., 2010, 40, 1601–1608.
  • Wu, K., Xu, L., De Schutter, G., Shi, H. and Ye, G., Influence of the interfacial transition zone and interconnection on chloride migration of portland cement mortar. J. Adv. Concr. Technol., 2015, 13, 169–177.
  • Halamickova, P., Detwiler, R. J., Bentz, D. P. and Garboczi, E. J., Water permeability and chloride ion diffusion in Portland cement mortars: relationship to sand content and critical pore diameter. Cem. Concr. Res., 1995, 25, 790–802.
  • Winslow, D. N., Cohen, M. D., Bentz, D. P., Snyder, K. A. and Garboczi, E. J., Percolation and pore structure in mortars and concrete. Cem. Concr. Res., 1994, 24, 25–37.
  • Maghsoodi, V. and Ramezanianpour, A., Effects of volumetric aggregate fraction on transport properties of concrete and mortar. Arab. J. Sci. Eng., 2009, 34, 327.
  • Pul, S., Ghaffari, A., Öztekin, E., Hüsem, M. and Demir, S., Experi-mental determination of cohesion and internal friction angle on conventional concretes. ACI Mater. J., 2017, 114, 407–417.
  • Moradi, N., Tavana, M. H., Habibi, M. R., Amiri, M., Moradi, M. J. and Farhangi, V., Predicting the compressive strength of concrete containing binary supplementary cementitious material using machine learning approach. Materials (Basel), 2022, 15, 5336.
  • Ahmad, W., Ahmad, A., Ostrowski, K. A., Aslam, F., Joyklad, P. and Zajdel, P., Application of advanced machine learning approaches to predict the compressive strength of concrete containing supplementary cementitious materials. Materials (Basel), 2021, 14, 5762.
  • Abdulhussein, Z. A. and Kopecskó, K., The effect of supplemen-tary cementitious materials on transport properties of cementitious materials – state-of-the-art. Concr. Struct. J. Hungarian Gr. FIB, 2021, 22, 21–28.

Abstract Views: 100

PDF Views: 61




  • Influence of Supplementary Cementitious Materials on Transport Properties of Concrete And Interfacial Transition Zone

Abstract Views: 100  |  PDF Views: 61

Authors

Shivani Sharma
Department of Civil Engineering, Indian Institute of Technology, Gandhinagar 382 355, India., India
Dhiman Basu
Department of Civil Engineering, Indian Institute of Technology, Gandhinagar 382 355, India., India

Abstract


Transport properties of concrete directly affect durability. A good comprehension of different transport properties and the role of supplementary cementitious materials (SCMs) will help in improving concrete quality. This article presents a brief review of the role of SCMs in concrete, transport mechanisms and their correlation with durability. The progress of research on transport properties like water penetration, sorption, electrical resistivity, chloride ingress, etc. with the partial replacement of different blenders is reviewed. The article also briefly examines the influence of SCMs on the interfacial transition zone (ITZ) and the link between ITZ and overall transport properties.

Keywords


Concrete, Durability, ITZ, Supplementary Cementitious Materials, Transport Properties.

References





DOI: https://doi.org/10.18520/cs%2Fv124%2Fi11%2F1263-1269