Open Access Open Access  Restricted Access Subscription Access

Fat Supplementation: Implication in Dairy Cattle


Affiliations
1 Department of Animal Nutrition, College of Veterinary Science and A.H., Anjora, Dau Shri Vasudev Chandrakar Kamdhenu Vishwavidyalaya (DSVCKV), Durg 491 001, India
2 ICAR-National Institute of Animal Nutrition and Physiology, Bengaluru 560 030, India
3 Veterinary Parasitology, College of Veterinary Science and A.H., Anjora, DSVCKV, Durg 491 001, India
 

Supplementation of fat or oil in the ration of high yielding dairy cattle increases the energy density of the ration without altering the composition of the other ingredients. A high proportion of free fatty acids in vegetable fat possibly improves fat digestibility in the total gastrointestinal tract and has been associated with variable effects on milk yield and milk fat composition. Vegetable fats are rich sources of essential fatty acids, viz. linoleic and linolenic acid, and varying amounts of monounsaturated oleic acid. Polyunsaturated fatty acids (PUFAs) in dietary fat are important substrates for the synthesis of reproductive hormones and prostaglandins and to augment the reproductive performance through stimulation of the growth of ovarian follicles, increase in follicle size and number, and increased function of corpus luteum (CL) in cattle. PUFA undergoes biohydrogenation in the rumen to produce conjugated linoleic acid (CLA). The milk CLA is identified to reduce body fat levels, improve glycaemic profile, resynthesize glycogen, modulate immune function, improve bone mineralization, prevent heart diseases, atherosclerosis, diabetes and cancer in humans. Significantly higher levels of fat/oil (>3%, generally) in the diet may adversely affect the fermentation pattern through adverse effects on fibrolytic bacteria and protozoa in the rumen, subsequently lowering the fibre and dry matter digestibility. To minimize the effect of higher levels of fat on rumen fermentation, fat may be supplied in a protected form that escapes rumen fermentation and is subsequently utilized in the lower digestive tract of high-yielding dairy cattle to produce beneficial effects.

Keywords

Dairy Cattle, Essential Fatty Acids, Fat Supplementation, Milk Production, Reproduction.
User
Notifications
Font Size

  • AlZahal, O., Or-Rashid, M., Greenwood, S. L. Douglas, M. S. and McBride, B. W., Subacute ruminal acidosis increases milk fat depression with diets supplemented with polyunsaturated fatty acids. J. Dairy Sci. (Suppl. 1), 2007, 90, 561.
  • Zheng, H. C., Liu, J. X., Yao, J. H., Yuan, Q., Ye, H. W., Ye, J. A. and Wu, Y. M., Effects of dietary sources of vegetable oils on performance of high-yielding lactating cows and conjugated linoleic acids in milk. J. Dairy Sci., 2005, 88, 2037–2042.
  • He, M. and Armentano, L. E., Effect of fatty acid profile in vegetable oils and antioxidant supplementation on dairy cattle performance and milk fat depression. J. Dairy Sci., 2011, 94(5), 2481–2491.
  • Castro, T., Martinez, D., Isabel, B., Cabezas, A. and Jimeno, V., Vegetable oils rich in polyunsaturated fatty acids supplementation of dairy cows’ diets: effects on productive and reproductive performance. Anim., 2019, 9(5), 205.
  • Dhiman, T. R., Satter, L. D., Pariza, M. W., Galli, M. P., Albright, K. A. R. E. N. and Tolosa, M. X., Conjugated linoleic acid (CLA) content of milk from cows offered diets rich in linoleic and linolenic acid. J. Dairy Sci., 2000, 83(5), 1016–1027.
  • Harfoot, C. O. and Hazlewood, O. P., Lipid metabolism in the rumen. In The Rumen Microbial Ecosystem (eds Hobson, P. N. and Stewart, C. S.), 1997, 2nd edn, pp. 382–426.
  • Ghazani, S. M. and Marangoni, A. G., Minor components in canola oil and effects of refining on these constituents: a review. J. Am. Oil Chem. Soc., 2013, 90(7), 923–932.
  • Lock, A. L. and Bauman, D. E., Modifying milk fat composition of dairy cows to enhance fatty acids beneficial to human health. Lipids, 2004, 39(12), 1197–1206.
  • Doreau, M., Demeyer, D. I. and Van Nevel, C. J., Transformation and effects of unsaturated fatty acids in the rumen: consequences on milk fat secretion. In Milk Composition, Production and Biotechnology (eds Welch, R. A. S. et al.), CAB International, Wallinford, Oxfordshire, UK, 1997, pp. 73–92.
  • Czerkawski, J. W. and Clapperton, J. L., Fats as energy-yielding compounds in the ruminant diet. In Fats in Animal Nutrition (ed. Wiseman, J.), Butterworths, Boston, Massachusetts, USA, 1984.
  • Kim, E. J., Huws, S. A., Lee, M. R., Wood, J. D., Muetzel, S. M., Wallace, R. J. and Scollan, N. D., Fish oil increases the duodenal flow of long chain polyunsaturated fatty acids and trans-11 18 : 1 and decreases 18 : 0 in steers via changes in the rumen bacterial community. J. Nutr., 2008, 138(5), 889–896.
  • Djordjevic, J., Ledina, T., Baltic, M. Z., Trbovic, D., Babic, M. and Bulajic, S., Fatty acid profile of milk. IOP Conf. Ser.: Earth Environ. Sci., 2019, 333; doi:10.1088/1755-1315/333/1/012057.
  • Lehnen, T. E., da Silva, M. R., Camacho, A., Marcadenti, A. and Lehnen, A. M., A review on effects of conjugated linoleic fatty acid (CLA) upon body composition and energetic metabolism. J. Int. Soc. Sports Nutr., 2015, 12(1), 1–11.
  • De Veth, M. J., Bauman, D. E., Koch, W., Mann, G. E., Pfeiffer, A. M. and Butler, W. R., Efficacy of conjugated linoleic acid for improving reproduction: a multi-study analysis in early-lactation dairy cows. J. Dairy Sci., 2009, 92(6), 2662–2669.
  • Gaullier, J. M., Halse, J., Høye, K., Kristiansen, K., Fagertun, H., Vik, H. and Gudmundsen, O., Supplementation with conjugated linoleic acid for 24 months is well tolerated by and reduces body fat mass in healthy, overweight humans. J. Nutr., 2005, 135(4), 778–784.
  • Albers, R., Van der Wielen, R. P. J., Brink, E. J., Hendriks, H. F. J., Dorovska-Taran, V. N. and Mohede, I. C. M., Effects of cis-9, trans-11 and trans-10, cis-12 conjugated linoleic acid (CLA) isomers on immune function in healthy men. Eur. J. Clin. Nutr., 2003, 57(4), 595–603.
  • Williams, C. M., Dietary fatty acids and human health. Ann. Zootech., 2000, 49(3), 165–180.
  • Aro, A., Männistö, S., Salminen, I., Ovaskainen, M. L., Kataja, V. and Uusitupa, M., Inverse association between dietary and serum conjugated linoleic acid and risk of breast cancer in postmenopausal women. Nutr. Cancer, 2000, 38(2), 151–157.
  • Fernandes, S. A. A., Mattos, W. R. S., Matarazzo, S. V., Tonhati, H., Gama, S. and Duarte Lanna, P., Activity of ∆9 -desaturase enzyme in mammary gland of lactating buffaloes. Ital. J. Anim. Sci. (Suppl. 2), 2007, 6, 1163–1166.
  • Griinari, J. M., Corl, B. A., Lacy, S. H., Chouinard, P. Y., Nurmela, K. V. V. and Bauman, D. E., Conjugated linoleic acid is synthesized endogenously in lactating dairy cows by ∆9 -desaturase. J. Nutr., 2000, 130(9), 2285–2291.
  • Bu, D. P., Wang, J. Q., Dhiman, T. R. and Liu, S. J., Effectiveness of oils rich in linoleic and linolenic acids to enhance conjugated linoleic acid in milk from dairy cows. J. Dairy Sci., 2007, 90(2), 998–1007.
  • Onetti, S. G., Shaver, R. D., McGuire, M. A. and Grummer, R. R., Effect of type and level of dietary fat on rumen fermentation and performance of dairy cows fed corn silage-based diets. J. Dairy Sci., 2001, 84, 2751–2759.
  • Palmquist, D., Beaulieu, A. and Barbano, D., Feed and animal factors influencing milk fat composition. J. Dairy Sci., 1993, 76, 1753–1771.
  • Chilliard, Y. and Ferlay, A., Dietary lipids and forages interactions on cow and goat milk fatty acid composition and sensory properties. Reprod. Nutr. Dev., 2004, 44(5), 467–492.
  • Ye, J. A. et al., Milk production and fatty acid profile of dairy cows supplemented with flaxseed oil, soybean oil, or extruded soybeans. Acta Agric. Scand., 2009, 59, 121–129; doi:10.1080/09064700903-082252.
  • Mahdavi, A., Mahdavi, A., Darabighane, B., Mead, A. and Lee, M. R., Effects of soybean oil supplement to diets of lactating dairy cows, on productive performance, and milk fat acids profile: a meta-analysis. Ital. J. Anim. Sci., 2019, 18(1), 809–819.
  • Rego, O. A. D., Rosa, H. J. D., Portugal, P., Cordeiro, R., Borba, A. E. S. D., Vouzela, C. M. and Bessa, R. J. B., Influence of dietary fish oil on conjugated linoleic acid, omega-3 and other fatty acids in milk fat from grazing dairy cows. Livest. Prod. Sci., 2005, 95(1–2), 27–33.
  • Manso, T., Castro, T., Mantecón, A. R. and Jimeno, V., Effects of palm oil and calcium soaps of palm oil fatty acids in fattening diets on digestibility, performance and chemical body composition of lambs. Anim. Feed Sci. Technol., 2006, 127(3–4), 175–186.
  • Martin, C., Rouel, J., Jouany, J. P., Doreau, M. and Chilliard, Y., Methane output and diet digestibility in response to feeding dairy cows crude linseed, extruded linseed, or linseed oil. J. Anim. Sci., 2008, 86(10), 2642–2650.
  • Huang, Y., Schoonmaker, J. P., Bradford, B. J. and Beitz, D. C., Response of milk fatty acid composition to dietary supplementation of soy oil, conjugated linoleic acid, or both. J. Dairy Sci., 2008, 91(1), 260–270.
  • Flowers, G., Ibrahim, S. A. and AbuGhazaleh, A. A., Milk fatty acid composition of grazing dairy cows when supplemented with linseed oil. J. Dairy Sci., 2008, 91(2), 722–730.
  • AbuGhazaleh, A. A., Schingoethe, D. J., Hippen, A. R. and Kalscheur, K. F., Conjugated linoleic acid and vaccenic acid in rumen, plasma, and milk of cows fed fish oil and fats differing in saturation of 18 carbon fatty acids. J. Dairy Sci., 2003, 86(11), 3648–3660.
  • Brzóska, F., Effect of dietary vegetable oils on milk yield, composition and CLA isomer profile in milk from dairy cows. J. Anim. Feed Sci., 2005, 14(3), 445–459.
  • Baumgard, L. H., Matitashvili, E., Corl, B. A., Dwyer, D. A. and Bauman, D. E., Trans-10, cis-12 conjugated linoleic acid decreases lipogenic rates and expression of genes involved in milk lipid synthesis in dairy cows. J. Dairy Sci., 2002, 85(9), 2155–2163.
  • Fearon, A. M., Mayne, C. S., Beattie, J. A. M. and Bruce, D. W., Effect of level of oil inclusion in the diet of dairy cows at pasture on animal performance and milk composition and properties. J. Sci. Food Agric., 2004, 84(6), 497–504.
  • Bindari, Y. R., Shrestha, S., Shrestha, N. and Gaire, T. N., Effects of nutrition on reproduction – a review. Adv. Appl. Sci. Res., 2013, 4(1), 421–429.
  • Staples, C. and Thatcher, W., Effects of fatty acids on reproduction of dairy cows. Rec. Adv. Anim. Nutr., 2005, 1, 229–256; doi:10. 5661/recadv-05-229.
  • Funston, R. N., Fat supplementation and reproduction in beef females. J. Anim. Sci. (Suppl. 13), 2004, 82, E154–E161.
  • Kumar, R., Ramteke, P. W., Nath, A., Pramod, R. K., Singh, S. P., Sharma, S. K. and Kumar, S., Role of candidate genes regulating uterine prostaglandins biosynthesis for maternal recognition of pregnancy in domestic animals. Int. Sch. Res. Notices, 2013; doi: 10.1155/2013/854572.
  • Mattos, R., Staples, C. R. and Thatcher, W. W., Effects of dietary fatty acids on reproduction in ruminants. Rev. Reprod., 2000, 5(1), 38–45.
  • Rahbar, B., Safdar, A. H. A. and Kor, N. M., Mechanisms through which fat supplementation could enhance reproduction in farm animal. Eur. J. Exp. Biol., 2014, 4(1), 340–348.
  • Ambrose, D. J., Kastelic, J. P., Corbett, R., Pitney, P. A., Petit, H. V., Small, J. A. and Zalkovic, P., Lower pregnancy losses in lactating dairy cows fed a diet enriched in α-linolenic acid. J. Dairy Sci., 2006, 89(8), 3066–3074.
  • Freret, S. et al., Effects of a n-3 polyunsaturated fatty acid-enriched diet on embryo production in dairy cows. Reproduction, 2019, 158(1), 71–83.
  • Fouladi-Nashta, A. A., Wonnacott, K. E., Gutierrez, C. G., Gong, J. G., Sinclair, K. D., Garnsworthy, P. C. and Webb, R., Oocyte quality in lactating dairy cows fed on high levels of n-3 and n-6 fatty acids. Reproduction, 2009, 138(5), 771–781.
  • Glister, C., Tannetta, D. S., Groome, N. P. and Knight, P., Interactions between follicle-stimulating hormone and growth factors in modulating secretion of steroids and inhibin-related peptides by non-luteinized bovine granulosa cells. Biol. Reprod., 2001, 65, 1020–1028.
  • Izadyar, F., Colenbrander, B. and Bevers, M. M., Stimulatory effect of growth hormone on in vitro maturation of bovine oocytes is exerted through the cyclic adenosine 30,50-monophosphate signaling pathway. Biol. Reprod., 1997, 57, 1484–1489.
  • Bilby, T. R., Sozzi, A., Lopez, M. M., Silvestre, F. T., Ealy, A. D., Staples, C. R. and Thatcher, W. W., Pregnancy, bovine somatotropin, and dietary n-3 fatty acids in lactating dairy cows: I. Ovarian, conceptus, and growth hormone–insulin-like growth factor system responses. J. Dairy Sci., 2006, 89(9), 3360–3374.
  • Robinson, R. S., Pushpakumara, P. G. A., Cheng, Z., Peters, A. R., Abayasekara, D. R. E. and Wathes, D. C., Effects of dietary poly-unsaturated fatty acids on ovarian and uterine function in lactating dairy cows. Reproduction, 2002, 124(1), 119–131.
  • Taylor, V. J., Cheng, Z. P. G. A., Pushpakumara, P. G. A., Wathes, D. C. and Beever, D. E., Relationships between the plasma concentrations of insulin‐like growth factor‐I in dairy cows and their fertility and milk yield. Vet. Rec., 2004, 155(19), 583–588.
  • Caldari-Torres, C., Lock, A. L., Staples, C. R. and Badinga, L., Performance, metabolic, and endocrine responses of periparturient Holstein cows fed 3 sources of fat. J. Dairy Sci., 2011, 94(3), 1500–1510.
  • Aranda-Ávila, I., Herrera-Camacho, J., Aké-López, J. R., Delgado-León, R. A. and Ku-Vera, J. C., Effect of supplementation with corn oil on postpartum ovarian activity, pregnancy rate, and serum concentration of progesterone and lipid metabolites in F1 (Bos taurus × Bos indicus) cows. Trop. Anim. Health Prod., 2010, 42(7), 1435–1440.
  • Zachut, M., Arieli, A. and Moallem, U., Incorporation of dietary n-3 fatty acids into ovarian compartments in dairy cows and the effects on hormonal and behavioural patterns around estrus. Reproduction, 2011, 141(6), 833–840.
  • Yao, H. T., Chang, Y. W., Lan, S. J., Chen, C. T., Hsu, J. T. A. and Yeh, T. K., The inhibitory effect of polyunsaturated fatty acids on human CYP enzymes. Life Sci., 2006, 79(26), 2432–2440.
  • Ryan, D. P., Bao, B., Griffith, M. K. and Williams, G. L., Metabolic and luteal sequelae to heightened dietary fat intake in undernourished, anestrous beef cows induced to ovulate. J. Anim. Sci., 1995, 73(7), 2086–2093.
  • Glidewell-Kenney, C., Hurley, L. A., Pfaff, L., Weiss, J., Levine, J. E. and Jameson, J. L., Nonclassical estrogen receptor alpha signaling mediates negative feedback in the female mouse reproductive axis. Proc. Natl. Acad. Sci. USA, 2007, 104, 8173–8177.
  • NRC, Nutrient Requirements of Dairy Cattle, Seventh Revised Edition, National Research Council, National Academy of Sciences, Washington, DC, USA, 2001, pp. 30–32.
  • Palmquist, D. L., The role of dietary fats in efficiency of ruminants. J. Nutr. (Suppl. 8), 1994, 124, 1377S–1382S.
  • Flachowsky, G., Wirth, R., Möckel, P. and Schneider, A., Influence of rumen protected fat on rumen fermentation, in sacco dry matter degradability and apparent digestibility in sheep. J. Appl. Anim. Res., 1995, 8(1), 71–84.
  • Chilliard, Y., Doreau, M., Gagliostro, G. and Elmeddah, Y., Addition de lipides protégés (encapsulés ou savons de calcium) à la ration de vaches laitières. Effets sur les performances et la composition du lait. Prod. Anim., 1993, 6(2), 139–150.
  • Gonthier, C., Mustafa, A. F., Ouellet, D. R., Chouinard, P. Y., Berthiaume, R. and Petit, H. V., Feeding micronized and extruded flaxseed to dairy cows: effects on blood parameters and milk fatty acid composition. J. Dairy Sci., 2005, 88(2), 748–756.
  • Gonthier, C., Mustafa, A. F., Berthiaume, R., Petit, H. V., Martineau, R. and Ouellet, D. R., Effects of feeding micronized and extruded flaxseed on ruminal fermentation and nutrient utilization by dairy cows. J. Dairy Sci., 2004, 87(6), 1854–1863.
  • Galmessa, U., Prasad, S., Kumaresan, A., Neelam, U., Oberoi, P. S., Baithalu, R. K. and Dang, A. K., Modulation of milk fatty acid profile, milk yield and composition through supplementation of omega-3 fatty acid in transition cow’s diet. J. Sci. Sustain. Dev., 2015, 3(1), 25–38.
  • Chouinard, P. Y., Corneau, L., Butler, W. R., Bauman, D. E., Chilliard, Y. and Drackley, J. K., Effect of dietary lipid source on conjugated linoleic acid concentrations in milk fat. J. Dairy Sci., 2001, 84(3), 680–690.
  • Fouladi-Nashta, A. A., Gutierrez, C. G., Gong, J. G., Garnsworthy, P. C. and Webb, R., Impact of dietary fatty acids on oocyte quality and development in lactating dairy cows. Biol. Reprod., 2007, 77(1), 9–17.
  • De Souza, J., Garver, J. L., Preseault, C. L. and Lock, A. L., Effects of prill size of a palmitic acid-enriched fat supplement on the yield of milk and milk components, and nutrient digestibility of dairy cows. J. Dairy Sci., 2017, 100(1), 379–384.
  • Singh, M., Sehgal, J. P., Roy, A. K., Pandita, S. and Rajesh, G., Effect of prill fat supplementation on hormones, milk production and energy metabolites during mid lactation in crossbred cows. Vet. World, 2014, 7(6), 384–388.
  • Dorni, C., Sharma, P., Saikia, G. and Longvah, T., Fatty acid profile of edible oils and fats consumed in India. Food Chem., 2018, 238, 9–15.
  • Welter, K. C., Martins, C. M. D. M. R., de Palma, A. S. V., Martins, M. M., Dos Reis, B. R., Schmidt, B. L. U. and Saran Netto, A., Canola oil in lactating dairy cow diets reduces milk saturated fatty acids and improves its omega-3 and oleic fatty acid content. PLoS ONE, 2016, 11(3), e0151876.

Abstract Views: 135

PDF Views: 78




  • Fat Supplementation: Implication in Dairy Cattle

Abstract Views: 135  |  PDF Views: 78

Authors

Sonali Prusty
Department of Animal Nutrition, College of Veterinary Science and A.H., Anjora, Dau Shri Vasudev Chandrakar Kamdhenu Vishwavidyalaya (DSVCKV), Durg 491 001, India
D. Rajendran
ICAR-National Institute of Animal Nutrition and Physiology, Bengaluru 560 030, India
Meenu Dubey
Department of Animal Nutrition, College of Veterinary Science and A.H., Anjora, Dau Shri Vasudev Chandrakar Kamdhenu Vishwavidyalaya (DSVCKV), Durg 491 001, India
Savita Bisen
Veterinary Parasitology, College of Veterinary Science and A.H., Anjora, DSVCKV, Durg 491 001, India

Abstract


Supplementation of fat or oil in the ration of high yielding dairy cattle increases the energy density of the ration without altering the composition of the other ingredients. A high proportion of free fatty acids in vegetable fat possibly improves fat digestibility in the total gastrointestinal tract and has been associated with variable effects on milk yield and milk fat composition. Vegetable fats are rich sources of essential fatty acids, viz. linoleic and linolenic acid, and varying amounts of monounsaturated oleic acid. Polyunsaturated fatty acids (PUFAs) in dietary fat are important substrates for the synthesis of reproductive hormones and prostaglandins and to augment the reproductive performance through stimulation of the growth of ovarian follicles, increase in follicle size and number, and increased function of corpus luteum (CL) in cattle. PUFA undergoes biohydrogenation in the rumen to produce conjugated linoleic acid (CLA). The milk CLA is identified to reduce body fat levels, improve glycaemic profile, resynthesize glycogen, modulate immune function, improve bone mineralization, prevent heart diseases, atherosclerosis, diabetes and cancer in humans. Significantly higher levels of fat/oil (>3%, generally) in the diet may adversely affect the fermentation pattern through adverse effects on fibrolytic bacteria and protozoa in the rumen, subsequently lowering the fibre and dry matter digestibility. To minimize the effect of higher levels of fat on rumen fermentation, fat may be supplied in a protected form that escapes rumen fermentation and is subsequently utilized in the lower digestive tract of high-yielding dairy cattle to produce beneficial effects.

Keywords


Dairy Cattle, Essential Fatty Acids, Fat Supplementation, Milk Production, Reproduction.

References





DOI: https://doi.org/10.18520/cs%2Fv124%2Fi12%2F1393-1400