Open Access
Subscription Access
Is Habitat Suitability Sex-Specific? A Study of the Indian Giant Squirrel (Ratufa indica maxima) in the Western Ghats of India
Habitat suitability difference between sexes results in sex-specific dispersal. Although this behaviour is one of the key factors in understanding population dynamics, there are limited studies to evaluate it in arboreal species. We studied the distribution of the Indian Giant Squirrel (IGS; Ratufa indica maxima) from a sex perspective. We also evaluated potentiallly suitable habitat types for the species in the Nelliyampathy Reserve Forest, Western Ghats, Kerala, India. We used the sweep survey method to record the distribution pattern of squirrels and analysed the influence of climatic layers and other variables on the distribution using MaxEnt. The study revealed that there was a difference between the sexes in habitat selection. Males preferred more land-use types than females, which were restricted to only certain land-use types. Some of the major factors that determined the distribution of species were distance from urban settlement (50.1%), distance from shade plantation (23.2%), distance from rocky outcrop (9.2%), minimum temperature of the coldest month (9%) and precipitation of the wettest quarter (8.5%). The final MaxEnt model output predicted 49.07% suitable habitat for IGS, of which 45.47% and 34.42% were suitable for males and females respectively, with an overlap of 30.82% between the sexes. We suggest that it would be important to include a sex perspective in species habitat suitability studies in order to gain insights into sex-related habitat specificity and its role in dispersal.
Keywords
Conservation Measures, Distribution Modelling, Habitat Loss, Ratufa indica maxima, Sex-Specific Dispersal.
User
Font Size
Information
- Baguette, M., Benton, T. G. and Bullock, J. M., Dispersal Ecology and Evolution, Oxford University Press, Oxford, UK, 2012.
- Trochet, A. et al., Evolution of sex-biased dispersal. Q. Rev. Biol., 2016, 91, 297–320.
- Martínez-Pérez, S., Galante, E. and Micó, E., Sex specificity of dispersal behaviour and flight morphology varies among tree hollow beetle species. Mov. Ecol., 2022, 10, 1–12.
- Greenwood, P. J., Mating systems, philopatry and dispersal in birds and mammals. Anim. Behav., 1980, 28, 1140–1162.
- Dobson, F. S., Competition for mates and predominant juvenile male dispersal in mammals. Anim. Behav., 1982, 30, 1183–1192.
- Pusey, A. E., Sex-biased dispersal and inbreeding avoidance in birds and mammals. Trends Ecol. Evol., 1987, 2, 295–299.
- Shaw, A. K. and Kokko, H., Mate finding Allee effects and selection for sex‐biased dispersal. J. Anim. Ecol., 2014, 83, 1256–1267.
- Baines, C. B., Ferzoco, I. M. and McCauley, S. J., Sex-biased dispersal is independent of sex ratio in a semiaquatic insect. Behav. Ecol. Sociobiol., 2017, 71, 1–7.
- Ferrier, S., Drielsma, M., Manion, G. and Watson, G., Extended statistical approaches to modelling spatial pattern in biodiversity in northeast New South Wales. II. Community-level modelling. Biodiver. Conserv., 2002, 11, 2309–2338.
- Rushton, S. P., Ormerod, S. J. and Kerby, G., New paradigms for modelling species distributions? J. Appl. Ecol., 2004, 41, 193–200.
- Baskaran, N., Venkatesan, S., Mani, J., Srivastava, S. K. and Desai, A. A., Some aspects of the ecology of the Indian Giant Squirrel Ratufa indica (Erxleben, 1777) in the tropical forests of Mudumalai Wildlife Sanctuary, southern India and their conservation implications. J. Threat. Taxa, 2011, 3, 1899–1908.
- Ramachandran, K. K. and Suganthasakthivel, R., Ecology and behaviour of the arboreal mammals of the Nelliyampathy forests. Report No. 382, Kerala Forest Research Institute, Peechi, Kerala, 2010.
- Erinjery, J. J., Kavana, T. S. and Singh, M., Food resources, distribution and seasonal variations in ranging in lion-tailed macaques, Macaca silenus in the Western Ghats, India. Primates, 2015, 56, 45–54.
- Ramachandran, K. K., Ecology and behaviour of Malabar giant squirrel (Ratufaindica maxima) Schreber. Report No. 55, Kerala Forest Research Institute, Peechi, Kerala, 1988.
- Srinivas, V., Venugopal, P. D. and Ram, S., Site occupancy of the Indian giant squirrel Ratufa indica (Erxleben) in Kalakad–Mundan-thurai Tiger Reserve, Tamil Nadu, India. Curr. Sci., 2008, 95, 889–894.
- Borges, R. M., Resource heterogeneity and the foraging ecology of the Malabar Giant Squirrel Ratufa indica. University of Miami, USA, 1989.
- Datta, A., Daytime resting in the nest – an adaptation by the Indian giant squirrel Ratufa indica to avoid predation. J. Bombay Nat. Hist. Soc., 1999, 96, 132–134.
- Somanathan, H., Mali, S. and Borges, R. M., Arboreal larder-hoarding in the tropical Indian giant squirrel Ratufa indica. Ecoscience, 2007, 14, 165–169.
- Molur, S., Ratufa indica. The IUCN Red List of Threatened Species 2016: e.T19378A22262028, 2016; https://dx.doi.org/10.2305/IUCN. UK.2016-2.RLTS.T19378A22262028.en (accessed on 30 January 2023).
- Singh, M., Kumara, H. N., Kumar, M. A., Sharma, A. K. and DeFalco, K., Status and conservation of lion-tailed macaque and other arboreal mammals in tropical rainforests of Sringeri Forest Range, Western Ghats, Karnataka, India. Primate Rep., 2000, 58, 5–16.
- Kumara, H. N. and Singh, M., The influence of differing hunting practices on the relative abundance of mammals in two rainforest areas of the Western Ghats, India. Oryx, 2004, 38, 321–327.
- Nowak, R. M. and Walker, E. P., Walker’s Mammals of the World (Vol. 1), JHU Press, Baltimore, USA, 1999.
- Whitesides, G. H., Oates, J. F., Green, S. M. and Kluberdanz, R. P., Estimating primate densities from transects in a West African rain forest: a comparison of techniques. J. Anim. Ecol., 1988, 57, 345–367.
- Smeraldo, S., Di Febbraro, M., Bosso, L., Flaquer, C., Guixé, D., Lisón, F. and Russo, D., Ignoring seasonal changes in the ecological niche of non-migratory species may lead to biases in potential distribution models: lessons from bats. Biodivers. Conserv., 2018, 27, 2425–2441.
- Fick, S. E. and Hijmans, R. J., WorldClim 2: new 1‐km spatial resolution climate surfaces for global land areas. Int. J. Climatol., 2017, 37, 4302–4315.
- De Bin, R., Janitza, S., Sauerbrei, W. and Boulesteix, A. L., Sub-sampling versus bootstrapping in resampling‐based model selection for multivariable regression. Biometrics, 2016, 72, 272–280.
- Phillips, S. J., Dudík, M. and Schapire, R. E., A maximum entropy approach to species distribution modeling. In Proceedings of the Twenty-First International Conference on Machine Learning, Banff Alberta, Canada, 2004, p. 83.
- Phillips, S. J., Anderson, R. P. and Schapire, R. E., Maximum entropy modeling of species geographic distributions. Ecol. Modell., 2006, 190, 231–259.
- Elith, J. and Leathwick, J. R., Species distribution models: ecological explanation and prediction across space and time. Annu. Rev. Ecol. Evol. Syst., 2009, 40, 677–697.
- Merow, C., Smith, M. J. and Silander Jr, J. A., A practical guide to MaxEnt for modeling species’ distributions: what it does, and why inputs and settings matter. Ecography, 2013, 36, 1058–1069.
- Soucy, J. P. R., Slatculescu, A. M., Nyiraneza, C., Ogden, N. H., Leighton, P. A., Kerr, J. T. and Kulkarni, M. A., High-resolution ecological niche modeling of Ixodes scapularis ticks based on passive surveillance data at the northern frontier of Lyme disease emergence in North America. Vector-Borne Zoonotic Dis., 2018, 18, 235–242.
- Zhang, K., Yao, L., Meng, J. and Tao, J., Maxent modelling for predicting the potential geographical distribution of two peony species under climate change. Sci. Total Environ., 2018, 634, 1326–1334.
- Halvorsen, R., Mazzoni, S., Bryn, A. and Bakkestuen, V., Opportunities for improved distribution modelling practice via a strict maximum likelihood interpretation of MaxEnt. Ecography, 2015, 38, 172–183.
- Phillips, S. J. and Dudík, M., Modeling of species distributions with MaxEnt: new extensions and a comprehensive evaluation. Ecography, 2008, 31, 161–175.
- Morales, N. S., Fernández, I. C. and Baca-González, V., MaxEnt’s parameter configuration and small samples: are we paying attention to recommendations? a systematic review. Peer J., 2017, 5, e3093.
- Warren, D. L. and Seifert, S. N., Ecological niche modeling in MaxEnt: the importance of model complexity and the performance of model selection criteria. Ecol. Appl., 2011, 21, 335–342.
- Perfecto, I. and Vandermeer, J., Biodiversity conservation in tropical agroecosystems: a new conservation paradigm. Ann. N.Y. Acad. Sci., 2008, 1134, 173–200.
- Caudill, S. A., DeClerck, F. J. and Husband, T. P., Connecting sustainable agriculture and wildlife conservation: does shade coffee provide habitat for mammals? Agric. Ecosyst. Environ., 2015, 199, 85–93.
- Guzmán, A., Link, A., Castillo, J. A. and Botero, J. E., Agroecosystems and primate conservation: shade coffee as potential habitat for the conservation of Andean night monkeys in the northern Andes. Agric. Ecosyst. Environ., 2016, 215, 57–67.
- Karanth, K. K. et al., Producing diversity: agroforests sustain avian richness and abundance in India’s Western Ghats. Front. Ecol. Evol., 2016, 4, 111.
- Gates, J. F., Habitat alteration, hunting and the conservation of folivorous primates in African forests. Aust. J. Ecol., 1996, 21, 1–9.
- Onderdonk, D. A. and Chapman, C. A., Coping with forest fragmentation: the primates of Kibale National Park, Uganda. Int. J. Primatol., 2000, 21, 587–611.
- Chapman, C. A., Chapman, L. J., Naughton‐Treves, L., Lawes, M. J. and Mcdowell, L. R., Predicting folivorous primate abundance: validation of a nutritional model. Am. J. Primatol., 2004, 62, 55–69.
- Li, X. Y. and Kokko, H., Sex‐biased dispersal: a review of the theory. Biol. Rev., 2019, 94, 721–736.
- Perrin, N. and Mazalov, V., Local competition, inbreeding, and the evolution of sex-biased dispersal. Am. Nat., 2000, 155, 116–127.
- Baines, C. B., Ferzoco, I. M. and McCauley, S. J., Sex-biased dispersal is independent of sex ratio in a semiaquatic insect. Behav. Ecol. Sociobiol., 2017, 71, 1–7.
- Angelo, M. J. and Slansky Jr, F., Body building by insects: trade-offs in resource allocation with particular reference to migratory species. Fla. Entomol., 1984, 67, 22–41.
- Prugnolle, F. and De Meeˆus, T., Inferring sex-biased dispersal from population genetic tools: a review. J. Hered., 2002, 88, 161–165.
- Erinjery, J. J., Singh, M. and Kent, R., Diet-dependent habitat shifts at different life stages of two sympatric primate species. J. Biosci., 2019, 44, 1–12.
Abstract Views: 234
PDF Views: 122