Open Access Open Access  Restricted Access Subscription Access

Status of Biofortification in Tropical Root and Tuber Crops


Affiliations
1 ICAR-Central Tuber Crops Research Institute, Sreekariyam, Thiruvananthapuram 695 017, India., India
 

Hidden hunger is a form of malnutrition, afflicting one-third of the world’s population. It is caused due to the lack of micronutrients, mainly iron, zinc and vitamin A, in the human diet and can lead to mental impairment, poor health, low productivity and even death. It is common in many developing and developed countries. A change in research focus from increased agricultural production of calorie-rich staple crops to nutrient-dense staple crops is crucial to address the above problem. Biofortification is a process of increasing the density of vitamins and minerals in a crop through plant breeding, transgenic or recombinant DNA technology or agrono­mic practices. Biofortification through breeding has been taken up as a challenge by HarvestPlus for cassava and sweet potato, which has resulted in the release of many biofortified varieties that could fight hidden hunger and ensure food security in many Sub-Saharan African countries. The BioCassavaPlus project adopted transgenic strategies for biofortification in cassava. Transgenic approaches serve as an alternative for biofortification in sweet potatoes. HarvestPlus has not included yam in its biofortification programme, though increasing the provitamin A carotenoid content of yam is much needed. Bioavailability of micronutrients has been thoroughly studied in sweet potatoes. In India, the ICAR-Central Tuber Crop Research Institute (CTCRI), Thiruvananthapuram has been involved in the biofortification of tropical tuber crops and has released many biofortified varieties in sweet potato, cassava and yam. In a collabo­rative work plan with CIP, ICAR-CTCRI is at present involved in the development of biofortified varieties of sweet potato. The need to release and adopt transgenic biofortified crops is discussed here, as sweet potato is a naturally transgenic crop.

Keywords

Biofortification, Hidden Hunger, Nutrient-Smart Agriculture, Transgenic Crops, Tubers.
User
Notifications
Font Size

  • Khush, G. S., Lee, S., Cho, J. I. and Jeon, J. S., Biofortification of crops for reducing malnutrition. Plant Biotechnol. Rep., 2012, 6, 195–202.
  • White, P. J. and Broadley, M. R., Biofortification of crops with seven mineral elements often lacking in human diets – iron, zinc, copper, calcium, magnesium, selenium and iodine. New Phytol., 2009, 182, 49–84.
  • Calton, J. B., Prevalence of micronutrient deficiency in popular diet plans. J. Int. Soc. Sports Nutr., 2010, 7, 24; https://doi.org/10.1186/ 1550-2783-7-24.
  • McGuire, S., International Food Policy Research Institute, Wash-ington, DC, Global Nutrition Report 2014: actions and accountabil-ity to accelerate the world's progress on nutrition. Adv. Nutr., 2015, 6, 278–279; doi:10.3945/an.115.008599.
  • IFPRI, Global Nutrition Report: Actions and accountability to ad-vance nutrition and sustainable development. International Food Policy Research Institute, Washington, DC, USA, 2015, p. 168; http://dx.doi.org/10.2499/9780896298835.
  • von Grebmer, K. et al., Global Hunger Index: The Challenge of Hidden Hunger, International Food Policy Research Institute and Concern Worldwide, Bonn, Washington, DC and Welthungerhilfe, Dublin, 2014, p. 56; http://dx.doi.org/10.2499/9780896299580.
  • WHO, World Health Statistics 2017: monitoring health for the SDGs, sustainable development goals. World Health Organization, Geneva, Switzerland, 2017, p. 116; https://apps.who.in/iris/handle/ 10665/255336, License: CC BY-NC-SA 3.0 IGO.
  • Grune, T. et al., Beta-carotene is an important vitamin A source for humans. J. Nutr., 2010, 140, 2268S–2285S; doi:10.3945/jn.109. 119024.
  • Yeum, K. J. and Russell, R. M., Carotenoid bioavailability and bio-conversion. Annu. Rev. Nutr., 2002, 22, 483–504; doi:10.1146/ annurev.nutr.22.010402.102834. 10. Fraser, P. D. and Bramley, P. M., The biosynthesis and nutritional uses of carotenoids. Prog. Lipid Res., 2004, 43, 228–265; doi:10.
  • F6/j.plipres.2003.10.002.
  • Bouis, H. E., Hotz, C., McClafferty, B., Meenakshi, J. V. and Pfeif-fer, W. H., Biofortification: a new tool to reduce micronutrient malnutrition. Food Nutr. Bull., 2011, 32, S31–S40.
  • Bouis, H. E. and Saltzman, A., Improving nutrition through biofor-tification: a review of evidence from HarvestPlus, 2003 through 2016. Global. Food Secur., 2017, 12, 49–58.
  • Garg, M., Sharma, N., Sharma, S., Kapoor, P., Kumar, A., Chun-duri, V. and Arora, P., Biofortified crops generated by breeding, agronomy, and transgenic approaches are improving lives of mil-lions of people around the world. Front. Nutr., 2018, 5, 12; https:// doi.org/10.3389/fnut.2018.00012.
  • Saltzman, A., Birol, E., Bouis, H. E., Boy, E., De Moura, F. F., Is-lam, Y. and Pfeiffer, W. H., Biofortification: progress toward a more nourishing future. Global Food Secur., 2013, 2, 9–17.
  • de Valença, A. W., Bake, A., Brouwer, I. D. and Giller, K. E., Ag-ronomic biofortification of crops to fight hidden hunger in sub-Saharan Africa. Global Food Secur., 2017, 12, 8–14.
  • Grüneberg, W. J. et al., Advances in sweet potato breeding from 1992 to 2012. In Potato and Sweet Potato in Africa: Transforming the Value Chains for Food and Nutrition Security (eds Low, J. et al.), CABI International, Boston, Massachusetts, USA, 2015, pp. 1–68.
  • Bouis, H. E. and Welch, R. M., Biofortification – a sustainable ag-ricultural strategy for reducing micronutrient malnutrition in the global south. Crop Sci., 2010, 50, S20–32; doi:10.2135/cropsci-2009.09.0531.
  • Prasad, B. V. G., Mohanta, S., Rahaman, S. and Bareily, P., Bio-fortification in horticulture crops. J. Agric. Eng. Food Technol., 2015, 2, 95–99.
  • Van Der Straeten, D. et al., Multiplying the efficiency and impact of biofortification through metabolic engineering. Nature Com-mun., 2020, 11, 5203; https://doi.org/10.1038/s41467-020-19020-4.
  • Giuliano, G., Provitamin A biofortification of crop plants: a gold rush with many miners. Curr. Opin. Biotechnol., 2017, 44, 169–180.
  • Wesseler, J. H. H. and Zilberman, D., The economic power of the Golden rice opposition. Environ. Dev. Econ., 2014, 19, 724–742.
  • Nayar, N. M., The contribution of tropical tuber crops towards food security. J. Root Crops, 2014, 40, 3–14.
  • Ceballos, H. et al., Cassava breeding: opportunities and challenges. Plant Mol. Biol., 2004, 56, 503–516; https://doi.org/10.1007/ s11103-004-5010-5.
  • CIAT, Project IP-3 Improved Cassava for the Developing World Annual Report 2002. International Center for Tropical Agriculture (CIAT), Cali, Colombia, 2002, p. 322.
  • Maziya-Dixon, B., Kling, J. G., Menkir, A. and Dixon, A., Genetic variation in total carotene, iron, and zinc contents of maize and cas-sava genotypes. Food Nutr. Bull., 2000, 21, 419–422; doi:10.1177/ 156482650002100415295.
  • Chavez, A. L. et al., Variation of quality traits in cassava roots evaluated in landraces and improved clones. Euphytica, 2005, 143, 125–133; doi:10.1007/s10681-005-3057-2.
  • Nassar, N. M. A., Fernandes, P. C., Melani, R. D. and Pires, O. R., Amarelinha do Amapá: a carotenoid-rich cassava cultivar. Genet. Mol. Res., 2009, 8, 1051–1055; doi:10.4238/vol8-3gmr625; PMID: 19731202.
  • Njoku, D. N., Egesi, C. N., Gracen, V. E., Offei, S. K., Asante, I. K. and Danquah, E. Y., Identification of pro-vitamin A cassava (Manihot esculenta Crantz) varieties for adaptation and adoption through participatory research. J. Crop Improv., 2014, 28, 361–376.
  • ICAR-CTCRI, Annual Report, ICAR-Central Tuber Crops Res-earch Institute, Thiruvananthapuram, India, 2020, p. 190.
  • Akinwale, M. G., Aladesanwa, R. D., Akinyele, B. O., Dixon, A. G. O. and Odiyi, A. C., Inheritance of β-carotene in cassava (Mani-hot esculenta Crantza). Int. J. Genet. Mol. Biol., 2010, 2, 198–201.
  • Beyene, G. et al., Provitamin A biofortification of cassava enhanc-es shelf life but reduces dry matter content of storage roots due to altered carbon partitioning into starch. Plant Biotechnol. J., 2018, 16, 1186–1200.
  • Sayre, R. T. et al., The BioCassava Plus program: biofortification of Cassava for Sub-Saharan Africa. Annu. Rev. Plant Biol., 2011, 62, 251–272; doi.org.10.1146/annurev-arplant-042110-103751.
  • Delmer, D. P., Agriculture in the developing world: connecting innovations in plant research to downstream applications. Proc. Natl. Acad. Sci., USA, 2005, 102, 15739–15746; doi: 10.1073/ pnas.0505895102. Epub 2005 Sep 8; PMID: 16263937.
  • Mayer, J. E., Pfeiffer, W. H. and Beyer, P., Biofortified crops to alleviate micronutrient malnutrition. Curr. Opin. Plant Biol., 2008, 11, 166–170.
  • Paine, J. A. et al., Improving the nutritional value of Golden Rice through increased pro-vitamin A content. Nature Biotechnol., 2005, 23, 482–487.
  • Welsch, R. et al., Provitamin A accumulation in cassava (Manihot esculenta) roots driven by a single nucleotide polymorphism in a phytoene synthase gene. Plant Cell, 2010, 22, 3348–3356.
  • Telengech, P. K., Maling’a, J. N., Nyende, A. B., Gichuki, S. T. and Wanjala, B. W., Gene expression of beta carotene genes in transgenic biofortified cassava. 3 Biotech, 2015, 5, 465–472.
  • Narayanan, N. N. et al., The iron assimilatory protein, FEA1, from Chlamydomonas reinhardtii facilitates iron-specific metal uptake in yeast and plants. Front. Plant Sci., 2011, 2, 67; doi:10.3389/fpls. 2011.00067. PMID: 22639604.
  • Narayanan, N. et al., Biofortification of field-grown cassava by en-gineering expression of an iron transporter and ferritin. Nature Bio-technol., 2019, 37, 144–151.
  • Grotz, N., Fox, T., Connolly, E., Park, W., Guerinot, M. L. and Ei-de, D., Identification of a family of zinc transporter genes from Ar-abidopsis that respond to zinc deficiency. Proc. Natl. Acad. Sci., USA, 1998, 95, 7220–7224; doi.org/10.1073/pnas.95.12.7220.
  • Gaitán-Solís, E., Taylor, N. J., Siritunga, D., Stevens, W. and Schachtman, D. P., Overexpression of the transporters AtZIP1 and AtMTP1 in cassava changes zinc accumulation and partitioning. Front. Plant Sci., 2015, 6, 492; doi:10.3389/fpls.2015.00492.
  • Kumar, S., Palve, A., Joshi, C., Srivastava, R. K. and Rukhsar, Crop biofortification for iron (Fe), zinc (Zn) and vitamin A with transgenic approaches. Heliyon, 2019, 5, e01914.
  • Benkeblia, N., Pinto, E. and Vasconcelos, M. W., Carotenoids bio-fortification of sweet potatoes. In Vitamins and Minerals Bioforti-fication of Edible Plants (ed. Benkeblia, N.), John Wiley, Chichester, UK, 2020, pp. 87–102; ISBN: 9781119511144.
  • Andrade, M. et al., Unleashing the potential of sweet potato in Sub-Saharan Africa: current challenges and way forward. Working Paper 2009-1, International Potato Center (CIP), Lima, Peru, 2009, p. 197.
  • Woolfe, J. A., Sweet potato: An Untapped Food Resource, Cam-bridge University Press, UK, 1992, p. 643.
  • Low, J. W., Ortiz, R., Vandamme, E., Andrade, M., Biazin, B. and Grüneberg, W. J., Nutrient-dense orange-fleshed sweet potato: ad-vances in drought-tolerance breeding and understanding of man-agement practices for sustainable next-generation cropping systems in Sub-Saharan Africa. Front. Sustain. Food Syst., 2020, 4, 1–22; ISSN 2571-581X.
  • Park, S.-C. et al., Overexpression of the IbMYB1 gene in an or-ange-fleshed sweet potato cultivar produces a dual-pigmented transgenic sweet potato with improved antioxidant activity. Phys-iol. Plant., 2015, 153, 525–537.
  • Vishnu, V. R., Renjith, R. S., Mukherjee, A., Anil, S. R., Sreekumar, J. and. Jyothi, A. N., Comparative study on the chemical structure and in vitro antiproliferative activity of anthocyanins in purple root tu-bers and leaves of sweet potato (Ipomoea batatas). J. Agric. Food Chem., 2019, 67, 2467–2475; doi:10.1021/acs.jafc.8b05473.
  • Jarret, R. L., Gawe1, N. and Whittemore, A., Phylogenetic relation-ships of the sweet potato [Ipomoea batatas (L.) Lam.]. J. Am. Soc. Hortic. Sci., 1992, 117, 633–637.
  • Cervantes-Flores, J. C. et al., Identification of quantitative trait loci for dry-matter, starch, and β-carotene content in sweet potato. Mol. Breed., 2011, 28, 201–216; https://doi.org/10.1007/s11032-010-9474-5.
  • Afuape, S., Tongoona, P., Asante, I., Egesi, C., Nwaigwe, G. and Offei, S., Breeding new sweet potato genotypes combining elevated content of two antagonistic traits of high dry matter and beta-carotene content in a high root yield background. Euphytica, 2019, 215, 211.
  • Bouis, H. and Islam, Y., Delivering nutrients widely through bio-fortification: building on orange sweet potato – scaling up in agri-culture, rural development and nutrition. International Food Policy Research Institute, Focus19, Brief 11, 2012, p. 2.
  • Hotz, C. et al., Introduction of β-carotene-rich orange sweet potato in rural Uganda resulted in increased vitamin A intakes among children and women and improved vitamin A status among chil-dren. J. Nutr., 2012, 142, 1871–1880.
  • Tumwegamire, S. et al., Evaluation of dry matter, protein, starch, sucrose, β-carotene, iron, zinc, calcium, and magnesium in East African sweetpotato (Ipomoea batatas (L.) Lam) Germplasm. Hortscience, 2011, 46, 348–357.
  • Ishida, H., Suzuno, H., Sugiyama, N., Innami, S., Tadokoro, T. and Maekawa, A., Nutritive evaluation on chemical components of leaves, stalks and stems of sweet potatoes (Ipomoea batatas Poir.). Food Chem., 2000, 68, 359–367.
  • Bovell Benjamin, A. C., Sweet potato: a review of its past, present, and future role in human nutrition. Adv. Food. Nutr. Res., 2007, 52, 1– 59; doi:10.1016/S1043-4526(06)52001-7. PMID: 17425943.
  • Kumagai, T., Umemura, Y., Baba, T. and Iwanaga, M., The inheri-tance of β-amylase null in storage roots of sweet potato (Ipomoea batatas L.). Theor. Appl. Genet., 1990, 79, 369–376; doi:10.1007/ BF01186081.
  • Laurie, S. M., Faber, M., Van Jaarsveld, P. J., Laurie, R. N., Du Plooy, C. P. and Modisane, P. C., β-Carotene yield and productivi-ty of orange-fleshed sweet potato (Ipomoea batatas L. Lam.) as in-fluenced by irrigation and fertilizer application treatments. Sci. Hortic., 2012, 142, 180–184; doi:4.10.1016/j.scienta.2012.05.017.
  • Kim, S. H., Ahn, Y. O., Ahn, M.-J., Lee, H.-S. and Kwak, S.-S., Down-regulation of β-carotene hydroxylase increases β-carotene and total carotenoids enhancing salt stress tolerance in transgenic cultu-red cells of sweet potato. Phytochemistry, 2012, 74, 69–78.
  • Park, S.-C. et al., Enhanced accumulation of carotenoids in sweet potato plants overexpressing IbOr-Ins gene in purple-fleshed sweet potato cultivar. Plant Physiol. Biochem., 2015, 86, 82–90.
  • Kim, S. H. et al., Downregulation of the lycopene ε{lunate}-cyclase gene increases carotenoid synthesis via the β-branch-specific path-way and enhances salt-stress tolerance in sweet potato transgenic calli. Physiol. Plant., 2013, 147, 432–442.
  • Kang, C., Zhai, H., Xue, L., Zhao, N., He, S. and Liu, Q., A lyco-pene β-cyclase gene, IbLCYB2, enhances carotenoid contents and abiotic stress tolerance in transgenic sweet potato. Plant Sci., 2018, 272, 243–254.
  • Kim, H. S., Ji, C. Y., Lee, C.-J., Kim, S.-E., Park, S.-C. and Kwak, S.-S., Orange: a target gene for regulating carotenoid homeostasis and increasing plant tolerance to environmental stress in marginal lands. J. Exp. Bot., 2018, 69, 3393–3400.
  • Lalusin, A. G., Nishita, K., Kim, S. H., Ohta, M. and Fujimura, T., A new MADS-box gene (IbMADS10) from sweet potato (Ipomoea batatas (L.) Lam) is involved in the accumulation of anthocyanin. Mol. Genet. Genomics, 2006, 275, 44–54.
  • Mano, H., Ogasawara, F., Sato, K., Higo, H. and Minobe, Y., Isolation of a regulatory gene of anthocyanin biosynthesis in tuberous roots of purple-fleshed sweet potato. Plant Physiol., 2007, 143, 1252–1268.
  • Kang, C., He, S., Zhai, H., Li, R., Zhao, N. and Liu, Q., A sweet potato auxin response factor gene (IbARF5) is involved in carote-noid biosynthesis and salt and drought tolerance in transgenic Ara-bidopsis. Front. Plant Sci., 2018, 9, 1307.
  • Vimala, B., Sreekanth, A., Hariprakash, B. and Wolfgang, G., Var-iation in morphological characters and storage root yield among exotic orange-fleshed sweet potato clones and their seedling popu-lation. J. Root Crops, 2012, 38, 32–37.
  • Nair, A., Prasannakumari, V., Sreekumar, J., Sheela, M. N. and Mohan, C., Evaluation of dry matter, starch content and β-carotene in F1 progenies of a cross between white-fleshed and orange-fleshed sweet potato. J. Root Crops, 2015, 41, 17–22.
  • Abdoulaye, T., Alene, A., Rusike, J. and Adebayo, A., RTB Priority Assessment Study: Yam Expert Survey. CGIAR Research Program on Roots, Tubers and Banana, 2015, p. 47.
  • Anwar, I., Sheela, M. N., Jyothy, A., Asha, K. I., Shanavas, S. and Abhilash, P. V., Evaluation of nutritional quality of under-utilized wild yams of Western Ghats of India. J. Root Crops, 2019, 45, 47–52.
  • Champagne, A., Bernillon, S., Moing, A., Rolin, D., Legendre, L. and Lebot, V., Carotenoid profiling of tropical root crop chemo-types from Vanuatu, South Pacific. J. Food Compos. Anal., 2010, 23(8), 763–771; http://dx.doi.org/10. 1016/j.jfca.2010.03.021.
  • Price, E., Bhattacharjee, R., Lopez-Montes, A. and Fraser, P., Caro-tenoid profiling of yams: clarity, comparisons and diversity. Food Chem., 2018, 259.
  • Bhattacharjee, R. et al., Dioscorea. In Wild Crop Relatives: Geno-mic and Breeding Resources (ed. Kole, C.), Springer, Berlin, Ger-many, 2011; https://doi.org/10.1007/978-3-642-21102-7_4.
  • Lebot, V., Section III. Yams. In Tropical Root and Tuber Crops: Cassava, Sweet Potato, Yams and Aroids (ed. Lebot, V.), CABI, Massachusetts, Cambridge, 2008, pp. 191–210; doi:10.1079/ 9781845934248.0191.
  • Ferede, R., Maziya-Dixon, B., Alamu, E. and Robert, A., Identifi-cation and quantification of major carotenoids of deep yellow-fleshed yam (tropical Dioscorea dumetorum). J. Food Agric. Envi-ron., 2010, 8, 160–166.
  • Oladeji, A. E., Maziya-Dixon, B., Roman, F.-M., Popoola, I., Robert, A. and Gondwe, T., Characterization and classification of the pro-vitamin A carotenoids of deep yellow-fleshed bitter yam (Dioscorea dumetorum) varieties. J. Food Nutr. Res., 2016, 4, 640–645.
  • Jayakody, L., Hoover, R., Liu, Q. and Donner, E., Studies on tuber starches. II. Molecular structure, composition and physicochemical properties of yam (Dioscorea sp.) starches grown in Sri Lanka. Carbohyd. Polym., 2007, 69, 148–163.
  • Ramos-Escudero, F., Santos-Buelga, C, Pérez-Alonso, J. J., Yáñez, J. A. and Dueñas, M., HPLC-DAD-ESI/MS identification of antho-cyanins in Dioscorea trifida L. yam tubers (purple sachapapa). Eur. Food Res. Technol., 2010, 230, 745–752.
  • Srivichai, S. and Hongsprabhas, P., Profiling anthocyanins in Thai purple yams (Dioscorea alata L.). Int. J. Food Sci., 2020, 2020, 1–10.
  • Champagne, A., Legendre, L. and Lebot, V., Biofortification of taro (Colocasia esculenta) through breeding for increased contents in carotenoids and anthocyanins. Euphytica, 2013, 194, 1–12.
  • de Moura, F. F. et al., Are biofortified staple food crops improving vitamin A and iron status in women and children? New evidence from efficacy trials. Adv. Nutr., 2014, 5, 568–570.
  • van Jaarsveld, P. J., Faber, M., Tanumihardjo, S. A., Nestel, P., Lombard, C. J. and Spinnler Benadé, A. J., Carotene-rich orange-fleshed sweet potato improves the vitamin A status of primary school children assessed with the modified-relative-dose-response test 1–3. Am. J. Clin. Nutr., 2005, 81, 1081–1087.
  • Jones, K. M. and de Brauw, A., Using agriculture to improve child health: promoting orange sweet potatoes reduces diarrhea. World Dev., 2015, 74, 15–24.
  • Tang, G., Bioconversion of dietary provitamin A carotenoids to vitamin A in humans. Am. J. Clin. Nutr., 2010, 91, 1468S–1473S; doi:10.3945/ajcn.2010.28674G.
  • van Jaarsveld, P. J., Marais, D. W., Harmse, E., Nestel, P. and Ro-driguez-Amaya, D. B., Retention of β-carotene in boiled, mashed orange-fleshed sweet potato. J. Food Compos. Anal., 2006, 19, 321–329.
  • Jongstra, R. et al., Iron absorption from iron-biofortified sweet po-tato is higher than regular sweet potato in Malawian women while iron absorption from regular and iron-biofortified potatoes is high in Peruvian women. J. Nutr., 2020, 150, 3094–3102.
  • Talsma, E. F. et al., Biofortified yellow cassava and vitamin A sta-tus of Kenyan children: a randomized controlled trial. Am. J. Clin. Nutr., 2016, 103, 258–267.
  • Kyndt, T. et al., The genome of cultivated sweet potato contains Agrobacterium T-DNAs with expressed genes: an example of a naturally transgenic food crop. Proc. Natl. Acad. Sci. USA, 2015, 112, 5844–5849.
  • Matveeva, T. and Otten, L., Widespread occurrence of natural ge-netic transformation of plants by Agrobacterium. Plant Mol. Biol., 2019, 101, 415–437.

Abstract Views: 227

PDF Views: 94




  • Status of Biofortification in Tropical Root and Tuber Crops

Abstract Views: 227  |  PDF Views: 94

Authors

Shirly Raichal Anil
ICAR-Central Tuber Crops Research Institute, Sreekariyam, Thiruvananthapuram 695 017, India., India
M. N. Sheela
ICAR-Central Tuber Crops Research Institute, Sreekariyam, Thiruvananthapuram 695 017, India., India
C. Visalakshi Chandra
ICAR-Central Tuber Crops Research Institute, Sreekariyam, Thiruvananthapuram 695 017, India., India
N. Krishna Radhika
ICAR-Central Tuber Crops Research Institute, Sreekariyam, Thiruvananthapuram 695 017, India., India
K. I. Asha
ICAR-Central Tuber Crops Research Institute, Sreekariyam, Thiruvananthapuram 695 017, India., India

Abstract


Hidden hunger is a form of malnutrition, afflicting one-third of the world’s population. It is caused due to the lack of micronutrients, mainly iron, zinc and vitamin A, in the human diet and can lead to mental impairment, poor health, low productivity and even death. It is common in many developing and developed countries. A change in research focus from increased agricultural production of calorie-rich staple crops to nutrient-dense staple crops is crucial to address the above problem. Biofortification is a process of increasing the density of vitamins and minerals in a crop through plant breeding, transgenic or recombinant DNA technology or agrono­mic practices. Biofortification through breeding has been taken up as a challenge by HarvestPlus for cassava and sweet potato, which has resulted in the release of many biofortified varieties that could fight hidden hunger and ensure food security in many Sub-Saharan African countries. The BioCassavaPlus project adopted transgenic strategies for biofortification in cassava. Transgenic approaches serve as an alternative for biofortification in sweet potatoes. HarvestPlus has not included yam in its biofortification programme, though increasing the provitamin A carotenoid content of yam is much needed. Bioavailability of micronutrients has been thoroughly studied in sweet potatoes. In India, the ICAR-Central Tuber Crop Research Institute (CTCRI), Thiruvananthapuram has been involved in the biofortification of tropical tuber crops and has released many biofortified varieties in sweet potato, cassava and yam. In a collabo­rative work plan with CIP, ICAR-CTCRI is at present involved in the development of biofortified varieties of sweet potato. The need to release and adopt transgenic biofortified crops is discussed here, as sweet potato is a naturally transgenic crop.

Keywords


Biofortification, Hidden Hunger, Nutrient-Smart Agriculture, Transgenic Crops, Tubers.

References





DOI: https://doi.org/10.18520/cs%2Fv124%2Fi2%2F169-175