Open Access Open Access  Restricted Access Subscription Access

Aromatic Plant Odours of Anethum graveolens And Coriandrum sativum Repel Whitefly, Bemisia tabaci in Tomato


Affiliations
1 ICAR-RCER, Research Centre for Makhana, Darbhanga 846 004, India, India
2 ICAR-Indian Institute of Horticultural Research, Hesseraghatta Lake PO, Bengaluru 560 089, India, India
3 ICAR-Indian Agricultural Research Institute, New Delhi 110 012, India, India
 

We studied the behavioural responses of female whitefly, Bemisia tabaci (Gennadius) towards headspace volatiles of tomato in the presence of aromatic intercrops, namely coriander (Coriandrum sativum L.) and dill (Anethum graveolens L.) using olfactometer bioassays, electrophysiological techniques and field experimentation. Olfactometer studies revealed the repellent nature of dill and coriander. Multiple-choice olfactometer studies revealed less residence time in tomato with coriander (T + Co; 1.33 ± 0.20 min) and tomato with dill (T + D; 1.97 ± 0.30 min) treated arms compared to sole tomato volatile treated arm (3.18 ± 0.35 min). Field studies also supported this trend, where significantly less whitefly incidence was recorded in treatment T + Co (2.34 ± 0.39 per three leaves) or T + D (3.33 ± 0.51 per three leaves) compared to sole tomato crop (5.71 ± 0.75 per three leaves). In coupled gas chromatography-electro­antennodetection (GC-EAD) studies, whitefly antenna responded to several compounds of dill and coriander. This study suggests that aromatic plants such as dill and coriander can be used as potential intercrop components in tomatoes to manage B. tabaci and the GC-EAD-identified compounds of dill and coriander will help formulate futuristic semiochemical-based pest management strategies against the whitefly.

Keywords

Aromatic Intercrops, Bemisia tabaci, Head-Space Volatiles, Pest Management Strategies, Tomato.
User
Notifications
Font Size

  • Perrin, R. M. and Phillips, M. L., Some effects of mixed cropping on the population dynamics of insect pests. Entomol. Exp. Appl., 1978, 24(3), 585–593.
  • Smith, H. A. and McSorley, R., Intercropping and pest manage-ment: a review of major concepts. Am. Entomol., 2000, 46(3), 154–161.
  • Degri, M. M., Mailafiya, D. M. and Mshelia, J. S., Effect of inter-cropping pattern on stem borer infestation in pearl millet ( Pennise-tum glaucum L.) grown in the Nigerian Sudan Savannah. Adv. Entomol., 2014, 2, 81–86.
  • Baidoo, P. K., Mochiah, M. B. and Apusiga, K., Onion as a pest control intercrop in organic cabbage (Brassica oleracea) produc-tion system in Ghana. Sustain. Agric. Res., 2012, 1, 36–41.
  • Sulvai, F., Chauque, B. J. M. and Macuvele, D. L. P., Intercropping of lettuce and onion controls caterpillar thread, Agrotis ipsilon ma-jor insect pest of lettuce. Chem. Biol. Technol., 2016, 3(1), 1–5.
  • Sujayanand, G. K., Sharma, R. K., Shankarganesh, K., Saha, S. and Tomar, R. S., Crop diversification for sustainable insect pest man-agement in eggplant (Solanales: Solanaceae). Fla. Entomol., 2015, 1, 305–314.
  • Khafagy, I. F., Samy, M. A. and Hamza, A. M., Intercropping of some aromatic plants with sugar beet, its effects on the tortoise beetle Cassida vittata Vill. infestation, appearance predators and sugar beet yield. J. Plant Prot. Pathol., 2020, 11(2), 103–110.
  • Khafagy, I. F., Promising role of some aromatic plants for the man-agement of Bemisia tabaci. Ph D thesis, Faculty of Agriculture, Kafr El Sheikh University, Kafr El Sheikh, Egypt, 2011, p. 172.
  • Landolt, P. J., Hofstetter, R. W. and Biddick, L. L., Plant essential oils as arrestants and repellents for neonate larvae of the codling moth (Lepidoptera: Tortricidae). Environ. Entomol., 1999, 28(6), 954–960.
  • Song, B., Tang, G., Sang, X., Zhang, J., Yao, Y. and Wiggins, N., Intercropping with aromatic plants hindered the occurrence of Aphis citricola in an apple orchard system by shifting predator – prey abundances. Biocontrol. Sci. Technol., 2013, 23(4), 381– 395.
  • Letourneau, D. K. et al., Does plant diversity benefit agro ecosys-tems? A synthetic review. Ecol. Appl., 2011, 21(1), 9–21.
  • Kamala Jayanthi, P. D., Raghava, T. and Kempraj, V., Functional diversity of infochemicals in agri-ecological networks. In Innovative Pest Management Approaches for the 21st Century (ed. Chakravarthy, A. K.), Springer, Singapore, 2020, pp. 187 –208.
  • Liu, T. X., Life history of Eretmocerus melanoscutus (Hymenop-tera: Aphelinidae) parasitizing nymphs of Bemisia tabaci biotype B (Homoptera: Aleyrodidae). Biol. Control, 2007, 42(1), 77–85.
  • Oliveira, M. R. V., Henneberry, T. E. and Anderson, P., History, current status, and collaborative research projects for Bemisia tabaci. Crop Prot., 2001, 20(9), 709–723.
  • Niggli, U., Leifert, C., Alfoldi, T., Luck, L. and Willer, H., Improving sustainability in organic and low input food production systems. In Proceedings of the Third International Congress of the European Integrated Project Quality Low Input Food. University of Hohen-heim, Germany, 2007, vol. 141, pp. 32–33.
  • Gerling, D., Alomar, O. and Arno, J., Biological control of Bemisia tabaci using predators and parasitoids. Crop Prot., 2001, 20(9), 779–799.
  • Hilje, L., Costa, H. S. and Stansly, P. A., Cultural practices for managing Bemisia tabaci and associated viral diseases. Crop Prot., 2001, 20(9), 801–812.
  • Kamala Jayanthi, P. D., Saravan Kumar, P. and Vyas, M., Odour cues from fruit arils of Artocarpus heterophyllus attract both sexes of oriental fruit flies. J. Chem. Ecol., 2021, 47(6), 552–563.
  • Kamala Jayanthi, P. D., Woodcock, C. M., Caulfield, J., Birkett, M. A. and Bruce, T. J. A., Isolation and identification of host cues from mango, Mangifera indica that attract gravid female oriental fruit fly, Bactrocera dorsalis. J. Chem. Ecol., 2012, 38, 361– 369.
  • Yadav, R. K., Kambham, M. R., Parepally, S. K., Vyas, M., Manem, K. R. and Kamala Jayanthi, P. D., Encounter with a selfish virus sabotages its vector to orient toward requisite host plant: a case study with chili leaf curl virus-whitefly. Front. Ecol. Evol., 2022, 10:819023; http://doi:10.3389/fevo.2022.819023.
  • Maitra, S. et al., Intercropping – a low input agricultural strategy for food and environmental secu rity. Agronomy, 2021, 11(2), 343.
  • Bleeker, P. M. et al., The role of specific tomato volatiles in toma-to–whitefly interaction. Plant Physiol., 2009, 151(2), 925–935.
  • Mann, R. S., Tiwari, S., Smoot, J. M., Rouseff, R. L. and Stelinski, L. L., Repellency and toxicity of plant‐based essential oils and their constituents against Diaphorina citri Kuwayama (Hemiptera: Psyl-lidae). J. Appl. Entomol., 2012, 136(1–2), 87–96.
  • Mousavi, M., Maroufpoor, N. and Valizadegan, O., Fumigant tox-icity of tarragon (Artemisia dracunculus L.) and dill (Anethum graveolens L.) essential oils on different life stages of Trialeurodes vaporariorum (Westwood). Acta Phytopathol. Entomol. Hung., 2018, 53(1), 29–42.
  • Togni, P. H., Laumann, R. A., Medeiros, M. A. and Sujii, E. R., Odour masking of tomato volatiles by coriander volatiles in host plant selection of Bemisia tabaci biotype B. Entomol. Exp. Appl., 2010, 136(2), 164–173.
  • Carvalho, M. G., Bortolotto, O. C. and Ventura, M. U., Aromatic plants affect the selection of host tomato plants by Bemisia tabaci biotype B. Entomol. Exp. Appl., 2017, 162(1), 86–92.
  • Pare, P. W. and Tumlinson, J. H., Plant volatiles as a defense against insect herbivores. Plant Physiol., 1999, 121(2), 325–332.
  • Bleeker, P. M. et al., Tomato-produced 7-epizingiberene and R-curcumene act as repellents to whiteflies. Phytochemistry, 2011, 72(1), 68–73.
  • Matu, F. K., Murungi, L. K., Mohamed, S. and Deletre, E., Behav-ioral response of the greenhouse whitefly ( Trialeurodes vaporario-rum) to plant volatiles of Ocimum basilicum and Tagetes minuta. Chemoecology, 2021, 31(1), 47–62.
  • Ojimelukwe, P. C. and Adler, C., Toxicity and repellent effects of eugenol, thymol, linalool, menthol and other pure compounds on Dinoderus bifloveatus (Coleoptera: Bostrichidae). J. Sustain. Agric. Environ., 2000, 2(1), 47–54.
  • Bernays, E. A., When host choice is a problem for a generalist her-bivore: experiments with the whitefly, Bemisia tabaci. Ecol. Ento-mol., 1999, 24(3), 260–267.
  • Tosh, C. R., Krause, J. and Ruxton, G. D., Theoretical predictions strongly support decision accuracy as a major driver of ecological specialization. Proc. Natl. Acad. Sci. USA, 2009, 106(14), 5698–5702.
  • Hilje, L. and Stansly, P. A., Living ground covers for management of Bemisia tabaci (Gennadius) (Homoptera: Aleyrodidae) and tomato yellow mottle virus in Costa Rica. Crop Prot., 2008, 27, 10–16.
  • Togni, P. H., Frizzas, M. R., de Medeiros, M. A., Nakasu, E. Y., Pires, C. S. and Sujii, E. R., Dinâmica populacional de Bemisia tabaci biótipo B em tomate monocultivo e consorciado com coentro sob cultivo orgânico e convencional. Hortic. Bras., 2009, 27, 183–188.
  • Yomna, N. M. A. A., Metwally, S. A. G., Barka, M. R. and Bahira, M. E. S., Reducing infestions of Bemisia tabaci (Hemiptera: Aleyrodidae) in cantaloupe using intercropping with non-host aro-matic plants. Egypt. J. Plant Prot. Res. Inst., 2018, 1(1), 58–68.
  • Maluta, N., Fereres, A. and Lopes, J. R. S., Plant-mediated indirect effects of two viruses with different transmission modes on Bemisia tabaci feeding behavior and fitness. J. Pest Sci., 2019, 92(2), 405–416.

Abstract Views: 252

PDF Views: 94




  • Aromatic Plant Odours of Anethum graveolens And Coriandrum sativum Repel Whitefly, Bemisia tabaci in Tomato

Abstract Views: 252  |  PDF Views: 94

Authors

Vinod K. Padala
ICAR-RCER, Research Centre for Makhana, Darbhanga 846 004, India, India
P. Saravan Kumar
ICAR-Indian Institute of Horticultural Research, Hesseraghatta Lake PO, Bengaluru 560 089, India, India
N. Ramya
ICAR-Indian Agricultural Research Institute, New Delhi 110 012, India, India
P. D. Kamala Jayanthi
ICAR-Indian Institute of Horticultural Research, Hesseraghatta Lake PO, Bengaluru 560 089, India, India

Abstract


We studied the behavioural responses of female whitefly, Bemisia tabaci (Gennadius) towards headspace volatiles of tomato in the presence of aromatic intercrops, namely coriander (Coriandrum sativum L.) and dill (Anethum graveolens L.) using olfactometer bioassays, electrophysiological techniques and field experimentation. Olfactometer studies revealed the repellent nature of dill and coriander. Multiple-choice olfactometer studies revealed less residence time in tomato with coriander (T + Co; 1.33 ± 0.20 min) and tomato with dill (T + D; 1.97 ± 0.30 min) treated arms compared to sole tomato volatile treated arm (3.18 ± 0.35 min). Field studies also supported this trend, where significantly less whitefly incidence was recorded in treatment T + Co (2.34 ± 0.39 per three leaves) or T + D (3.33 ± 0.51 per three leaves) compared to sole tomato crop (5.71 ± 0.75 per three leaves). In coupled gas chromatography-electro­antennodetection (GC-EAD) studies, whitefly antenna responded to several compounds of dill and coriander. This study suggests that aromatic plants such as dill and coriander can be used as potential intercrop components in tomatoes to manage B. tabaci and the GC-EAD-identified compounds of dill and coriander will help formulate futuristic semiochemical-based pest management strategies against the whitefly.

Keywords


Aromatic Intercrops, Bemisia tabaci, Head-Space Volatiles, Pest Management Strategies, Tomato.

References





DOI: https://doi.org/10.18520/cs%2Fv124%2Fi2%2F231-238