Open Access Open Access  Restricted Access Subscription Access

Tectonic Restoration of the Achankovil Suture Zone, South India: Correlation with Ranotsara Shear Zone, Madagascar


Affiliations
1 CSIR-National Geophysical Research Institute, Hyderabad 500 007, India
 

The total magnetic intensity (TMI) image of the southernmost part of the Indian peninsular shield exhibits a conspicuous NW–SE trending mega lineament of 200 km, associated with Achankovil Suture Zone (AKSZ) across the Southern Granulite Terrain (SGT) that evolved during East African Orogeny. This crustal scale anomaly of 200 nT amplitude, is significant to understand the regional tectonics and the possible linkage between AKSZ and Ranotsara Shear Zone (RSZ) of Madagascar. The structural trends are inferred from magnetic data surrounding AKSZ and RSZ to reconstruct the Gondwana fragments of the SGT and south Madagascar. The aeromagnetic images of conjugate rifted fragments of this part of India and Madagascar are connected well on both sides: the Madurai block with Antananarivo domain and Trivandrum block with Anosyan domain, north and south of AKSZ–RSZ respectively. Magnetic modelling across AKSZ reveals a hidden subsurface basic body suggesting a deep geofracture. We infer the sequence of tectonic development of the AKSZ as: (i) the subduction–accretion process in amalgamation of continental fragments to form Gondwana supercontinent during the Late Neoproterozoic and (ii) Pan-African exhumation of anomalous sub-crustal material.

Keywords

Aeromagnetic Data, Lithological Units, Magnetic Anomaly, Suture Zones, Tectonic Restoration.
User
Notifications
Font Size

  • Stern, R. J., Continental collision in Neoproterozoic East African Orogen: implications for the consolidation of Gondwanaland. Annu. Rev. Earth Planet. Sci., 1994, 22, 319–351.
  • Chetty, T. R. K., Proterozoic shear zones in Southern Granulite Terrain, India. In The Archaean and Proterozoic Terrains of Southern India within East Gondwana (eds Santosh, M. and Yoshida, M.), Gondwana Research Group Memoir, Field Science Publications, 1996, vol. 3, pp. 77–89.
  • Drury, S. A. and Holt, R. W., The tectonic framework of the South Indian craton: a reconnaissance involving LANDSAT imagery. Tectonophysics, 1980, 65, T1–T5.
  • Dhanunjaya Naidu, G., Manoj, C., Patro, P. K., Sreedhar, S. V. and Harinarayana, T., Deep electrical signatures across the Achankovil shear zone, Southern Granulite Terrain inferred from magnetotellurics. Gondwana Res., 2011, 20, 405–426.
  • Sacks, P. E., Nambiar, C. G. and Walters, L. J., Dextral Pan-African shear along the southern edge of the Achankovil shear belt, South India: constraints on Gondwana reconstructions. J. Geol., 1997, 105, 275–284.
  • Guru Rajesh, K. and Chetty, T. R. K., Structure and tectonics of the Achankovil Shear Zone, southern India. Gondwana Res., 2006, 10, 86–98.
  • Santosh, M., Shaji, E., Tsunogae, T., Ram Mohan, M. and Horie, K., Suprasubduction zone ophiolite from Agali hill: petrology, zircon SHRIMP U–Pb geochronology, geochemistry and implications for Neoarchean plate tectonics in southern India. Precambrian Res., 2013, 231, 301–324.
  • Ramsay, J. G., Folding and Fracturing of Rocks, McGraw Hill, New York, USA, 1967, p. 568.
  • Rajesh, V. J., Arai, S., Satish-Kumar, M., Santosh, M. and Tamura, A., High-Mg low-Ni olivine cumulates from a Pan-African accretionary belt in southern India: implications for the genesis of volatile-rich high-Mg melts in suprasubduction setting. Precambrian Res., 2013, 227, 409–425.
  • Mandal, B., Vijaya Rao, V., Karuppannan, P., Raju, S. and Ganguli, S. S., Thick-skinned tectonics of the Achankovil Shear Zone, southern India, inferred from new deep seismic reflection image: constraints on the East African Orogen. Precambrian Res., 2021, 356, 106–110.
  • Chetty, T. R. K., Proterozoic Orogens of India: A Critical Window to Gondwana, eBook, Elsevier, Amsterdam, The Netherlands, 2017, pp. 364–365.
  • Windley, B. F., Razafiniparany, A., Razakamanana, T. and Ackermand, D., Tectonic framework of the Precambrian of Madagascar and its Gondwana connections: a review and reappraisal. Geol. Rundsch., 1994, 83, 642–659.
  • Kriegsman, L. M., The Pan-African event in East Antarctica: a view from Sri Lanka and the Mozambique Belt. Precambrian Res., 1995, 75, 263–277.
  • Markl, G., Metamorphic evolution of Pan-African granulite facies metapelites from southern Madagascar. Precambrian Res., 2000, 102, 47–68.
  • Cenki, B., Braun, I. and Brocker, M., Evolution of the continental crust in the Kerala Khondalite Belt, southernmost India: evidence from Nd isotope mapping, U–Pb and Rb–Sr geochronology. Pre-cambrian Res., 2004, 134, 275–292.
  • Manimaran, G., Finite strain patterns and transpression regime of Achankovil Shear Zone, South India and their implications in Gondwana reconstructions. Geosci. Front., 2014, 2, 23–29.
  • Praharaj, P., Rekha, S. and Bhattacharya, A., Structure and chronology across the Achankovil terrain boundary shear zone system (South India), and its Madagascar connection in the Gondwanaland. Int. J. Earth Sci., 2021; https://doi.org/10.1007/s00531-021-02029-5.
  • De Wit, M. J., Bowring, S. A., Ashwal, L. D., Randianasolo, L. G., Morel, V. P. I. and Rambeloson, R. A., Age and tectonic evolution of Neoproterozoic ductile shear zones in southwestern Madagascar, with implications for Gondwana studies. Tectonics, 2001, 20, 1–45.
  • Collins, A. S. and Windley, B. F., The tectonic evolution of central and northern Madagascar and its place in the final assembly of Gondwana. J. Geol., 2002, 110, 325–340.
  • Collins, A. S., Madagascar and the amalgamation of Central Gondwana. Gondwana Res., 2006, 9, 3–16.
  • Ratheesh-Kumar, R. T., Ishwar-Kumar, C., Windley, B. F., Razak-amanana, T., Rajesh, Nair, R. and Sajeev, K., India–Madagascar paleo-fit based on flexural isostasy of their rifted margins. Gondwana Res., 2015, 28(2), 581–600.
  • Pradeepkumar, A. P. and Krishnanath, R., A Pan-African ‘Humite Epoch’ in East Gondwana: implications for Neoproterozoic Gondwana geometry. J. Geodyn., 2000, 29, 43–62.
  • Rajesh, V. J., Arima, M. and Santosh, M., Dunite, glimmerite and spinellite in Achankovil Shear Zone, South India: implications for highly potassic CO2-rich melt influx along an intracontinental shear zone. Gondwana Res., 2004, 7(4), 961–974; doi:10.1016/S1342-937X(05)71078-9.
  • Bartlett, J. M., Dougherty-Page, J. S., Harris, N. B. W., Hawkes-worth, C. J. and Santosh, M., The application of single zircon evaporation and model Nd ages to the interpretation of polymetamorphic terrains: an example from the Proterozoic mobile belt of south India. Contrib. Mineral. Petrol., 1998, 131, 181–195.
  • Yellappa, T. and Mallikharjuna Rao, J., Geochemical characteristics of Proterozoic granite magmatism from Southern Granulite Terrain, India: implications for Gondwana. J. Earth Syst. Sci., 2018, 127, 22; https://doi.org/10.1007/s12040-018-0923-6.
  • Reddy, A. G. B., Mathew, M. P., Singh, B. and Naidu, P. S., Aeromagnetic evidence of crustal structure in the granulite terrain of Tamil Nadu–Kerala. J. Geol. Soc. India, 1988, 32, 368–381.
  • Grauch, V. J. S., Rodriguez, B. D. and Wooden, J. L., Geophysical and isotopic constraints on crustal structure related to mineral trends in North–Central Nevada and implications for tectonic history. Econ. Geogr., 2003, 98, 269–286.
  • Betts, P. G., Valenta, R. K. and Finlay, J., Evolution of the Mount Woods Inlier, northern Gawler Craton, southern Australia: an integrated structural and aeromagnetic analysis. Tectonophysics, 2003, 366, 83–111.
  • Wennerstrom, M. and Airo, M. L., Magnetic fabric and emplacement of the post-collisional Pomovaara Granitic Complex in northern Fennoscandia. Lithos, 1998, 45, 131–145.
  • Nabighian, M. N. et al., The historical development of the magnetic method in exploration. Geophysics, 2005, 70(6), 33–61.
  • Rambabu, H. V. and Prasanthi Laxmi, M., Aeromagnetic characteristics of the Achankovil Shear Belt, South India. In CSIR Diamond Jubilee Seminar on Frontiers of Geophysical Research, National Geophysical Research Institute, Hyderabad, 2003, pp. 86–89.
  • Behera, L., Crustal tomographic imaging and geodynamic implications toward south of Southern Granulite Terrain (SGT), India. Earth Planet. Sci. Lett., 2011, 309(1), 166–178.
  • Kumar, N., Singh, A. P., Rao, M. R. K. P., Chandrasekhar, D. V. and Singh, B., Gravity signatures derived crustal structure and tectonics of Achankovil shear zone, southern India. Gondwana Res., 2009, 16, 45–55.
  • Talwani, M., Worzel, J. L. and Landisman, M., Rapid gravity computations for two-dimensional bodies with application to the Mendocino submarine fracture zone. J. Geophys., 1959, 64, 49–59.
  • Talwani, M. and Heirtzler, J. R., Computation of magnetic anomalies caused by two-dimensional bodies of arbitrary shape. In Computers in the Mineral Industries. Part 1 (ed. Parks, G. A.), Stanford University Publications, Geological Science, USA, 1964, vol. 9, pp. 464–480.
  • Won, I. J. and Bevis, M., Computing the gravitational and magnetic anomalies due to a polygon. Algorithms and Fortran subroutines. J. Geophys., 1987, 52(2), 232–238.
  • Shuey, R. T. and Pasqulae, A. S., End corrections in magnetic profile interpretation. J. Geophys., 1973, 38(3), 507–512.
  • PGW, Program Documentation-MAGMOD Version 1.4, Magnetic Interpretation Software Library, Paterson, Grant and Watson Ltd, Toronto, ON, Canada, 1982, p. 17.
  • Ramachandran, C., Metamorphism and magnetic susceptibilities in South Indian Granulite Terrain. J. Geol. Soc. India, 1990, 35, 395–403.
  • Martelat, J. E., Randrianasolo, B., Schulmann, K., Lardeaux, J.-M. and Devidal, J.-L., Airborne magnetic data compared to petrology of crustal scale shear zones from southern Madagascar: a tool for deciphering magma and fluid transfer in orogenic crust. J. Afr. Earth Sci., 2014, 94, 74–85.
  • Gao, P., Santosh, M., Cheng-Xue, Y., Sanghoon, K. and Ramkumar, Mu., High Ba–Sr adakitic charnockite suite from the Nagercoil Block, southern India: vestiges of Paleoproterozoic arc and implications for Columbia to Gondwana. Geosci. Front., 2021, 12, 101–126.
  • Santosh, M., Tagawa, M., Taguchi, S. and Yoshikura, S., The Nagercoil Granulite Block, southern India: petrology, fluid inclusions and exhumation history. J. Asian Earth Sci., 2003, 22, 131–155.
  • Johnson, A. S. H. and Aisengart, T., Interpretation of magnetic data at low magnetic latitudes using magnetization vector inversion. J. Geophys., 2014, 3, 91–96.
  • Cenki, B. and Kriegsman, Leo M., Tectonics of the Neoproterozoic Southern Granulite Terrain, South India. Precambrian Res., 2005, 138(1–2), 37–56.
  • Santosh, M., Tanaka, M., Yokoyama, K. and Collins, A. S., Late Neoproterozoic–Cambrian felsic magmatism along transcrustal shear zones in southern India: U–Pb electron microprobe ages and implications for the amalgamation of the Gondwana supercontinent. Gondwana Res., 2005, 8, 31–42.
  • Reeves, C., The position of Madagascar within Gondwana and its movements during Gondwana dispersal. J. Afr. Earth Sci., 2014, 94, 45–57.
  • Muller, B. G. J., The evolution and significance of Bongolava–Ranotsara shear zone, Madagascar. Ph.D. thesis, Rand Afrikaans University, South Africa, 2000.
  • Besairie, H., 1 : 2,000,000 Geological Map of Madagascar (l sheet). Survey of Geological, Madagascar, 1973.

Abstract Views: 84

PDF Views: 42




  • Tectonic Restoration of the Achankovil Suture Zone, South India: Correlation with Ranotsara Shear Zone, Madagascar

Abstract Views: 84  |  PDF Views: 42

Authors

Mallipeddi Prasanthi Lakshmi
CSIR-National Geophysical Research Institute, Hyderabad 500 007, India
Thadikonda Sambasivarao
CSIR-National Geophysical Research Institute, Hyderabad 500 007, India
Shaik Parveen Begum
CSIR-National Geophysical Research Institute, Hyderabad 500 007, India

Abstract


The total magnetic intensity (TMI) image of the southernmost part of the Indian peninsular shield exhibits a conspicuous NW–SE trending mega lineament of 200 km, associated with Achankovil Suture Zone (AKSZ) across the Southern Granulite Terrain (SGT) that evolved during East African Orogeny. This crustal scale anomaly of 200 nT amplitude, is significant to understand the regional tectonics and the possible linkage between AKSZ and Ranotsara Shear Zone (RSZ) of Madagascar. The structural trends are inferred from magnetic data surrounding AKSZ and RSZ to reconstruct the Gondwana fragments of the SGT and south Madagascar. The aeromagnetic images of conjugate rifted fragments of this part of India and Madagascar are connected well on both sides: the Madurai block with Antananarivo domain and Trivandrum block with Anosyan domain, north and south of AKSZ–RSZ respectively. Magnetic modelling across AKSZ reveals a hidden subsurface basic body suggesting a deep geofracture. We infer the sequence of tectonic development of the AKSZ as: (i) the subduction–accretion process in amalgamation of continental fragments to form Gondwana supercontinent during the Late Neoproterozoic and (ii) Pan-African exhumation of anomalous sub-crustal material.

Keywords


Aeromagnetic Data, Lithological Units, Magnetic Anomaly, Suture Zones, Tectonic Restoration.

References





DOI: https://doi.org/10.18520/cs%2Fv125%2Fi9%2F955-969