Open Access Open Access  Restricted Access Subscription Access

Quantum State Estimation Using Weak Measurements


Affiliations
1 Department of Physical Sciences, Indian Institute of Science Education and Research Mohali, Manauli 140 306, India
 

We explore the possibility of using 'weak measurements' without 'weak value' for quantum state estimation. Since for weak measurements the disturbance caused during each measurement is small, we can rescue and recycle the state, unlike for the case of projective measurements. We use this property of weak measurements and design schemes for quantum state estimation for qubits and for Gaussian states. We show, via numerical simulations, that under certain circumstances, our method can outperform the estimation by projective measurements. It turns out that ensemble size plays an important role and the scheme based on recycling works better for small ensembles.

Keywords

Fidelity, Gaussian State, Projective Measurement, Qubit, State Estimation, Weak Measurement.
User
Notifications
Font Size

  • Brun, T. A., A simple model of quantum trajectories. Am. J. Phys., 2002, 70(7), 719–737.
  • Aharonov, Y., Albert, D. Z. and Vaidman, L., How the result of a measurement of a component of the spin of a spin-1/2 particle can turn out to be 100. Phys. Rev. Lett., 1988, 60(14), 1351–1354.
  • Ali, S. T. and Emch, G. G., Fuzzy observables in quantum mechanics. J. Math. Phys., 1974, 15(2), 176–182.
  • Ali, S. T. and Prugovecki, E., Systems of imprimitivity and representations of quantum mechanics on fuzzy phase spaces. J. Math. Phys., 1977, 18(2), 219–228.
  • Busch, P. and Lahti, P. J., On various joint measurements of position and momentum observables in quantum theory. Phys. Rev. D, 1984, 29(8), 1634–1646.
  • Diosi, L., Single qubit estimation from repeated unsharp measurements. Fortschr. Phys., 2003, 51(2–3), 96–101.
  • Kraus, K., Bohm, A., Dollard, J. D. and Wootters, W., States, Effects, and Operations Fundamental Notions of Quantum Theory, Springer, 1983.
  • Prugovecki, E., Quantum two particle scattering in fuzzy phase space. J. Math. Phys., 1976, 17(9), 1673–1681.
  • Nielsen, M. A. and Chuang, I. L., Quantum Computation and Quantum Information, Cambridge University Press, 2000.
  • Peres, A., Quantum Theory: Concepts and Methods, Kluwer Academic Publishers, 1993.
  • Massar, S. and Popescu, S., Optimal extraction of information from finite quantum ensembles. Phys. Rev. Lett., 1995, 74(8), 1259–1263.
  • Branciard, C., Error-tradeoff and error-disturbance relations for incompatible quantum measurements. Proc. Natl. Acad. Sci. USA, 2013, 110(17), 6742–6747.
  • Cheong, Y. W. and Lee, S. -W., Balance between information gain and reversibility in weak measurement. Phys. Rev. Lett., 2012, 109(15), 150402-1 to 5.
  • Hari Dass, N. D., Repeated weak measurements on a single copy are invasive. arXiv:1406.0270[quant-ph].
  • Ueda, M. and Kitagawa, M., Reversibility in quantum measurement processes. Phys. Rev. Lett., 1992, 68(23), 3424–3427.
  • Rozema, L. A., Darabi, A., Mahler, D. H., Hayat, A., Soudagar, Y. and Steinberg, A. M., Violation of Heisenberg’s measurementdisturbance relationship by weak measurements. Phys. Rev. Lett., 2012, 109(10), 100404-1 to 5.
  • Oreshkov, O. and Brun, T. A., Weak measurements are universal. Phys. Rev. Lett., 2005, 95(11), 110409-1 to 4.
  • Lundeen, J. S., Sutherland, B., Patel, A., Stewart, C. and Bamber, C., Direct measurement of the quantum wavefunction. Nature, 2011, 474(7350), 188–191.
  • Lundeen, J. S. and Bamber, C., Procedure for direct measurement of general quantum states using weak measurement. Phys. Rev. Lett., 2012, 108(7), 070402-1 to 5.
  • Hofmann, H. F., Quantum states as complex probabilities: the physics behind direct observations of photon wavefunctions in weak measurements. arXiv:1311.0093[quant-ph].
  • Kobayashi, H., Nonaka, K. and Shikano, Y., Stereographical visualization of a polarization state using weak measurements with an optical-vortex beam. Phys. Rev. A, 2014, 89(5), 053816-1 to 5.
  • Shikano, Y. and Tanaka, S., Estimation of spin-spin interaction by weak measurement scheme. Europhys. Lett., 2011, 96(4), 40002-1 to 5.
  • Wu, S., State tomography via weak measurements. Sci. Rep., 2013, 3, 1193-1 to 5.
  • Hofmann, H. F., Complete characterization of post-selected quantum statistics using weak measurement tomography. Phys. Rev. A, 2010, 81(1), 012103-1 to 5.
  • Das, D. and Arvind, Estimation of quantum states by weak and projective measurements. Phys. Rev. A, 2014, 89(6), 062121-1 to 10.
  • von Neumann, J., Mathematical Foundations of Quantum Mechanics, Princeton University Press, 1955.
  • Duck, I. M., Stevenson, P. M. and Sudarshan, E. C. G., The sense in which a ‘weak measurement’ of a spin-1/2 particle’s spin component yields a value 100. Phys. Rev. D, 1989, 40(6), 2112–2117.
  • Marcovitch, S. and Reznik, B., Testing Bell inequalities with weak measurements. arXiv:1005.3236[quant-ph].
  • Goggin, M. E., Almeida, M. P., Barbieri, M., Lanyon, B. P., OBrien, J. L., White, A. G. and Pryde, G. J., Violation of the LeggettGarg inequality with weak measurements of photons. Proc. Natl. Acad. Sci. USA, 2011, 108(4), 1256–1261.
  • Singh, U. and Pati, A. K., Quantum discord with weak measurements. Ann. Phys., 2014, 343, 141–152.
  • Jozsa, R., Complex weak values in quantum measurement. Phys. Rev. A, 2007, 76(4), 044103-1 to 3.
  • Aharonov, Y., Popescu, S. and Tollaksen, J., A time-symmetric formulation of quantum mechanics. Physics Today, 2010, 63(11), 27–32.
  • Dixon, P. B., Starling, D. J., Jordan, A. N. and Howell, J. C., Ultrasensitive beam deflection measurement via interferometric weak value amplification. Phys. Rev. Lett., 2009, 102(17), 173601–1 to 4.
  • Koike, T. and Tanaka, S., Limits on amplification by Aharonov– Albert–Vaidman weak measurement. Phys. Rev. A, 2011, 84(6), 062106-1 to 5.
  • Nishizawa, A., Nakamura, K. and Fujimoto, M. -K., Weak-value amplification in a shot-noise-limited interferometer. Phys. Rev. A, 2012, 85(6), 062108-1 to 5.
  • Aharonov, Y., Popescu, S., Rohrlich, D. and Skrzypczyk, P., Quantum cheshire cats. New J. Phys., 2013, 15, 113015-1 to 8.
  • Denkmayr, T., Geppert, H., Sponar, S., Lemmel, H., Matzkin, A., Tollaksen, J. and Hasegawa, Y., Observation of a quantum Cheshire cat in a matter-wave interferometer experiment. Nature Commun., 2014, 5, 4492-1 to 7.
  • Combes, J., Ferrie, C., Jiang, Z. and Caves, C. M., Quantum limits on postselected, probabilistic quantum metrology. Phys. Rev. A, 2014, 89(5), 052117-1 to 10.
  • Ferrie, C. and Combes, J., Weak value amplification is suboptimal for estimation and detection. Phys. Rev. Lett., 2014, 112(4), 040406-1 to 5.
  • Vaidman, L., Comment on ‘Weak value amplification is suboptimal for estimation and detection’. arXiv:1402.0199[quantph].
  • Sakurai, J. J., Modern Quantum Mechanics (revised edition), Addison Wesley, 1993.

Abstract Views: 475

PDF Views: 156




  • Quantum State Estimation Using Weak Measurements

Abstract Views: 475  |  PDF Views: 156

Authors

Debmalya Das
Department of Physical Sciences, Indian Institute of Science Education and Research Mohali, Manauli 140 306, India
Arvind
Department of Physical Sciences, Indian Institute of Science Education and Research Mohali, Manauli 140 306, India

Abstract


We explore the possibility of using 'weak measurements' without 'weak value' for quantum state estimation. Since for weak measurements the disturbance caused during each measurement is small, we can rescue and recycle the state, unlike for the case of projective measurements. We use this property of weak measurements and design schemes for quantum state estimation for qubits and for Gaussian states. We show, via numerical simulations, that under certain circumstances, our method can outperform the estimation by projective measurements. It turns out that ensemble size plays an important role and the scheme based on recycling works better for small ensembles.

Keywords


Fidelity, Gaussian State, Projective Measurement, Qubit, State Estimation, Weak Measurement.

References





DOI: https://doi.org/10.18520/cs%2Fv109%2Fi11%2F1939-1945