Open Access
Subscription Access
Experimental Tests of Macrorealism: An Assessment
The macrorealistic inequality of Leggett and Garg is reviewed, along with a recent experiment that aims to test it.
Keywords
Interference, Leggett–Garg Inequality, Macrorealism, Superposition, Transmon.
User
Font Size
Information
- Bell, J. S., On the Einstein Podolsky–Rosen–Paradox. Physics, 1964, 1(3), 195–200.
- Clauser, J. F., Horne, M. A., Shimony, A. and Holt, R. A., Proposed experiment to test hidden-variable theories. Phys. Rev. Lett., 1969, 23(15), 880–884; Erratum, ibid, 1970, 24(10), 549.
- Leggett, A. J. and Garg, A., Quantum mechanics versus macroscopic realism: is the flux there when nobody looks? Phys. Rev. Lett., 1985, 54(9), 857–860.
- Palacios-Laloy, A., Mallet, F., Nguyen, F., Bertet, P., Vion, D., Esteve, D. and Korotkov, A., Experimental violation of a Bell’s inequality in time with weak measurement. Nature Phys., 2010, 6(6), 442–447.
- Bohr, N., Can quantum mechanical description of physical reality be considered complete? Phys. Rev., 1935, 48(8), 696–702.
- Einstein, A., Podolsky, B. and Rosen, N., Can quantum mechanical description of physical reality be considered complete? Phys. Rev., 1935, 47(10), 777–780.
- Peres, A., Unperformed experiments have no results. Am. J. Phys., 1978, 46(7), 745–747.
- Garg, A. and Mermin, N. D., Detector inefficiencies in the Einstein– Podolsky–Rosen experiment. Phys. Rev. D, 1987, 35(12), 3831–3835.
- Leggett, A. J., Testing the limits of quantum mechanics: motivation, state of play, prospects. J. Phys.: Condens. Matter, 2002, 14(15), R415–R451.
- Koch, J. et al., Charge-insensitive qubit design derived from the Cooper pair box. Phys. Rev. A, 2007, 76(4), 042319-1 to 04231919.
- Schreier, J. A. et al., Suppressing charge noise decoherence in superconducting charge qubits. Phys. Rev. B, 2008, 77(18), 180502(R)-1 to 180502(R)-4.
- Blais, A., Huang, R.-S., Wallraff, A., Girvin, S. M. and Schoelkopf, R. J., Cavity quantum electrodynamics for superconducting electrical circuits: an architecture for quantum computation. Phys. Rev. A, 2004, 69(6), 062320-1 to 062320-14.
- Goppl, M. et al., Coplanar waveguide resonators for circuit quantum electrodynamics. J. Appl. Phys., 2008, 104(11), 113904-1 to 113904-8.
- Korotkov, A. N. and Averin, D. V., Continuous weak measurement of quantum coherent oscillations. Phys. Rev. B, 2001, 61(16), 165310-1 to 165310-5.
- Ruskov, R. and Korotkov, A. N., Quantum feedback control of a solid-state qubit. Phys. Rev. B, 2002, 66(4), 041401(R)-1 to 041401(R)-4.
- Ruskov, R., Korotkov, A. N. and Mizel, A., Signatures of quantum behavior in single-qubit weak measurements. Phys. Rev. Lett., 2006, 96(20), 200404-1 to 200404-4.
- Robens, C., Alt, W., Meschede, D., Emary, C. and Alberti, A., Ideal negative measurements in quantum walks disprove theories based on classical trajectories. Phys. Rev. X, 2015, 5(1), 011003-1 to 011003-10.
- Leggett, A. J., Macroscopic quantum systems and the quantum theory of measurement. Prog. Theor. Phys. Suppl., 1980, 69, 80–100.
- Arndt, M., Nairz, O., Vos-Andreae, J., Keller, C., van der Zouw, G. and Zeilinger, A., Waveparticle duality of C60 molecules. Nature, 1999, 401(6754), 680–682.
- Griffiths, R. B., Consistent histories and the interpretation of quantum mechanics. J. Stat. Phys., 1984, 36(1–2), 219–272.
Abstract Views: 322
PDF Views: 116