Open Access
Subscription Access
Uncertainty Relation and Quantum Cheshire-Cat: Studied with Neutron Polarimeter and Interferometer
Fundamental phenomena in quantum mechanics are investigated by the use of matter-wave optics: in the studies neutron polarimeter and interferometer are exploited. Successive measurements of 1/2-spin of the neutron are carried out to test the error-disturbance uncertainty relation. The experimental results confirm the violation of Heisenberg's original reciprocal relation for measurement error and disturbance, and the validity of the reformulated generally valid relation. In addition, as an example of a counterfactual phenomenon of quantum mechanics, interferometric experiment is performed to observe the so-called quantum Cheshire-Cat: a particle and its magnetic moment travel through the interferometer along different beam paths. The results of our experiment suggest that, with suitable pre- and post-selections, neutrons travel along one of the arms of the interferometer, while their spin is located in the other arm.
Keywords
Cheshire-Cat, Interferometer, Polarimeter, Neutron, Uncertainty Relation.
User
Font Size
Information
- Arndt, M., Ekers, A., von Klitzing, W. and Ulbricht, H., Focus on modern frontiers of matter wave optics and interferometry. New J. Phys., 2012, 14, 125006-1 to 125006-9, and references therein.
- Feynman, R. P., Leighton, P. B. and Sands, M. L., The Feynman Lectures on Physics, Vol. III: Quantum Mechanics, AddisionWesley, 1965.
- Popescu, S., Dynamical quantum non-locality. Nature Phys., 2010, 6(2), 151–153.
- Rauch, H., Treimer, W. and Bonse, U., Test of a single crystal neutron interferometer. Phys. Lett. A, 1974, 47(5), 369–371.
- Rauch, H. and Werner, S. A., Neutron Interferometry, Oxford University Press, 2015.
- Hasegawa, Y. and Rauch, H., Quantum phenomena explored with neutrons. New J. Phys., 2011, 13, 115010-1 to 115010-18.
- Mezei, F., Neutron Spin Echo, Lecture Notes in Physics, Springer, 1980, vol. 128.
- Klepp, J., Sponar, S. and Hasegawa, Y., Fundamental phenomena of quantum mechanics explored with neutron interferometers. Prog. Theor. Exp. Phys., 2014, 2014(8), 082A01-1 to 082A01-61.
- Hasegawa, Y. and Badurek, G., Noncommuting spinor rotation due to balanced geometrical and dynamical phases. Phys. Rev. A, 1999, 59(6), 4614–4622.
- Klepp, J., Sponar, S., Filipp, S., Lettner, M., Badurek, G. and Hasegawa, Y., Observation of nonadditive mixed-state phases with polarized neutrons. Phys. Rev. Lett., 2008, 101(15), 150404-1 to 150404-4.
- Erhart, J., Sponar, S., Sulyok, G., Badurek, G., Ozawa, M. and Hasegawa, Y., Experimental demonstration of a universally valid error–disturbance uncertainty relation in spin measurements. Nature Phys., 2012, 8(3), 185–189.
- Sulyok, G., Sponar, S., Erhart, J., Badurek, G., Ozawa, M. and Hasegawa. Y., Violation of Heisenberg’s error–disturbance uncertainty relation in neutron-spin measurements. Phys. Rev. A, 2013, 88(2), 022110-1 to 022110-15.
- Ozawa, M., Universally valid reformulation of the Heisenberg uncertainty principle on noise and disturbance in measurement. Phys. Rev. A, 2003, 67, 042105; Ozawa, M., Physical content of Heisenberg’s uncertainty relation: limitation and reformulation. Phys. Lett. A, 2003, 318(1-2), 21–29.
- Ozawa, M., Uncertainty relations for noise and disturbance in generalized quantum measurements. Ann. Phys. (N.Y.), 2004, 311(2), 350–416.
- Aharonov, Y. and Rohrlich, D., Quantum Paradoxes: Quantum Theory for the Perplexed, Wiley-VCH, 2005.
- Aharonov, Y., Popescu, S., Rohrlich, D. and Skrzypczyk, P., Quantum Cheshire Cats. New J. Phys., 2013, 15, 113018-1 to 113018-9.
- Denkmayr, T., Geppert, H., Sponar, S., Lemmel, H., Matzkin, A., Tollaksen, J. and Hasegawa, Y., Observation of a quantum Cheshire Cat in a matter-wave interferometer experiment. Nature Commun., 2014, 5, 4492-1 to 4492-7.
- Wheeler, J. A. and Zurek, W. H. (eds), Quantum Theory and Measurement, Princeton University Press, 1983.
- Heisenberg, W., Über den anschaulichen inhalt der quantentheoretischen kinematik und mechanic – The actual content of quantum theoretical kinematics and mechanics. Z. Phys., 1927, 43(3–4), 172–198.
- Kennard, E. H., Zur quantenmechanik einfacher bewegungtypen. Z. Phys., 1927, 44(4–5), 326–352.
- Robertson, H. P., The uncertainty principle. Phys. Rev., 1929, 34(1), 163–164; Schrödinger, E., Zum Heisenbergschen unschärfeprinzip. Sitzungsberichte Preus. Akad. Wiss., Phys.-Math. Klasse, 1930, 14, 296–303.
- Rozema, L. A., Darabi, A., Mahler, D. H., Hayat, A., Soudagar, Y. and Steinberg, A. M., Violation of Heisenberg’s measurement– disturbance relationship by weak measurements. Phys. Rev. Lett., 2012, 109(10), 100404-1 to 100404-5.
- Baek, S. -Y., Kaneda, F., Ozawa, M. and Edamatsu, K., Experimental violation and reformulation of the Heisenberg’s error– disturbance uncertainty relation. Sci. Rep., 2013, 3, 2221-1 to 2221-5.
- Weston, M. M., Hall, M. J. W., Palsson, M. S., Wiseman, H. M. and Pryde, G. J., Experimental test of universal complementarity relations. Phys. Rev. Lett., 2013, 110(22), 220402-1 to 220402-5.
- Branciard, C., Error–tradeoff and error–disturbance relations for incompatible quantum measurements. Proc. Natl. Acad. Sci. USA, 2013, 110(17), 6742–6747.
- Ringbauer, M., Biggerstaff, D. N., Broome, M. A., Fedrizzi, A., Branciard, C. and White, A. G., Experimental joint quantum measurements with minimum uncertainty. Phys. Rev. Lett., 2014, 112(2), 020401-1 to 020401-5.
- Kaneda, F., Baek, S. -Y., Ozawa, M. and Edamatsu, K., Experimental test of error–disturbance uncertainty relations by weak measurement. Phys. Rev. Lett., 2014, 112(2), 020402-1 to 020402-5.
- Lu, X. -M., Yu, S., Fujikawa, K. and Oh, C. H., Improved error– tradeoff and error–disturbance relations in terms of measurement error components. Phys. Rev. A, 2014, 90(4), 042113-1 to 7, and references therein.
- Busch, P., Lahti, P. and Werner, R. F., Proof of Heisenberg’s error–disturbance relation. Phys. Rev. Lett., 2013, 111(16), 160405-1 to 160405-5.
- Rozema, L. A., Mahler, D. H., Hayat, A. and Steinberg, A. M., A note on different definitions of momentum disturbance. Quantum Stud.: Math. Found., 2013, 2(1), 17–22.
- Ozawa, M., Disproving Heisenberg’s error–disturbance relation. arXiv:1308.3540[quant-ph].
- Korzekwa, K., Jennings, D. and Rudolph, T., Operational constraints on state-dependent formulations of quantum error– disturbance trade-off relations. Phys. Rev. A, 2014, 89(5), 0521081 to 052108-6.
- Buscemi, F., Hall, M. J. W., Ozawa, M. and Wilde, M. M., Noise and disturbance in quantum measurements: an information theoretic approach. Phys. Rev. Lett., 2014, 112(5), 050401-1 to 050401-5.
- Sulyok, G., Sponar, S., Demirel, B., Busemi, F., Hall, M. J., Ozawa, M. and Hasegawa, Y., Experimental test of entropic noisedisturbance uncertainty relations for spin-1/2 measurements. Phys. Rev. Lett., 2015, 115(3), 030401-1 to 030401-5.
- Schrödinger, E., Die gegenwartige situation in der quantenmechanik. Naturwissenschaften, 1935, 23(48), 807–812.
- Einstein, A., Podolsky, B. and Rosen, N., Can quantummechanical description of physical reality be considered complete? Phys. Rev., 1935, 47(10), 777–780.
- Hardy, L., Quantum mechanics, local realistic theories, and Lorentz-invariant realistic theories. Phys. Rev. Lett., 1992, 68(20), 2981–2984.
- Lundeen, J. S. and Steinberg, A. M., Experimental joint weak measurement on a photon pair as a probe of Hardy’s paradox. Phys. Rev. Lett., 2009, 102(2), 020404-1 to 020404-4.
- Yokota, K., Yamamoto, T., Koashi, M. and Imoto, N., Direct observation of Hardy’s paradox by joint weak measurement with an entangled photon pair. New J. Phys., 2009, 11, 033011-1 to 033011-9.
- Aharonov, Y., Albert, D. Z. and Vaidman, L. H., How the result of a measurement of a component of the spin of a spin-1/2 particle can turn out to be 100. Phys. Rev. Lett., 1988, 60(14), 1351–1354.
- Duck, I. M., Stevenson, P. M. and Sudarshan, E. C. G., The sense in which a ‘weak measurement’ of a spin-1/2 particle’s spin component yields a value 100. Phys. Rev. D, 1989, 40(6), 2112–2117.
- Ritchie, N. W. M., Story, J. G. and Hulet, R. G., Realization of a measurement of a ‘weak value’. Phys. Rev. Lett., 1991, 66(9), 1107–1110.
- Jozsa, R., Complex weak values in quantum measurement. Phys. Rev. A, 2007, 76(4), 044103-1 to 044103-3.
- Hosten, O. and Kwiat, P., Observation of the spin Hall effect of light via weak measurements. Science, 2008, 319(5864), 787–790.
- Hasegawa, Y., Investigations of fundamental phenomena in quantum mechanics with neutrons. J. Phys. Conf. Ser., 2014, 504, 012025-1 to 012025-13.
Abstract Views: 397
PDF Views: 139