Open Access Open Access  Restricted Access Subscription Access

Petrogenesis of an Early Cretaceous Potassic Lamprophyre Dyke from Rongjeng, East Garo Hills, Shillong Plateau, North-Eastern India


Affiliations
1 Department of Geology, Centre of Advanced Study, Banaras Hindu University, Varanasi 221 005, India
2 Dipartimento di Scienze della Terra, dell'Ambiente e delle Risorse, Universita di Napoli Federico II, I–80134 Napoli, Italy
3 Dr K.S. Krishnan Geomagnetic Research Laboratory, Indian Institute of Geomagnetism, Allahabad 211 505, India
 

An early Cretaceous potassic lamprophyre dyke, exposed near Rongjeng, East Garo Hills, Shillong plateau, north-eastern India, is a highly porphyritic rock with large phenocrysts of clinopyroxene, phlogopite, amphibole and olivine. Reversely zoned phlogopite and clinopyroxene grains indicate that some degree of interaction between magma batches of variable composition took place somewhere during the crystallization of the lamprophyre. Mineral compositions indicate its derivation from an alkaline magma comparable with those that filled the nearby Jasra potassic intrusion. Moreover, the geochemistry of the Rongjeng lamprophyre is distinctly different from that of the Damodar Valley lamproites, the Sung Valley carbonatitic-ijolitic intrusion, and the Antarctic ultramafic lamprophyres. The contrasting geochemical affinity is suggestive of heterogenous lithospheric mantle sources, rather than input of plume-related magmatism.

Keywords

Geochemistry, Lithospheric Alkaline Magmatism, Mantle Heterogeneity, Petrogenesis, Potassic Lamprophyre.
User
Notifications
Font Size

  • Rock, N. M. S., The nature and origin of lamprophyres: an overview.In Alkaline Igneous Rocks (eds Fitton, J. G. and Upton, B.G. J.), Geol. Soc. London Spec. Publ., 1987, 30, 191-226.
  • Woolley, A. R., Bergman, S. C., Edgar, A. D., Le Bas, M. J., Mitchell, R. H., Rock, N. M. S. and Scott-Smith, B. H., Classification of lamprophyres, lamproites, kimberlites, and the kalsilitic, melilitic and leucitic rocks. Can. Mineral., 1996, 34, 175-186.
  • Le Maitre, R. W., Igneous Rocks: A Classification and Glossary of Terms, Cambridge University Press, Cambridge, 2002.
  • Riley, T. R., Leat, P. T., Storey, B. C., Parkinson, I. J. and Millar, I. L., Ultramafic lamprophyres of the Ferrar large igneous province: evidence for a HIMU mantle component. Lithos, 2003, 66, 63-76.
  • Tappe, S. et al., Genesis of ultramafic lamprophyres and carbonatites at Aillik Bay, Labrador: a consequence of incipient lithospheric thinning beneath the North Atlantic Craton. J. Petrol., 2006, 47, 1261-1315.
  • Orejana, D., Villaseca, C., Billstrom, K. and Paterson, B. A., Petrogenesis of Permianalkaline lamprophyres and diabases from the Spanish central system and theirgeodynamic context within western Europe. Contrib. Mineral. Petrol., 2008, 156, 477-500.
  • Kerr, A. C., Khan, M., Mahoney, J. J., Nicholson, K. N. and Hall, C. M., Late Cretaceousalkaline sills of the south Tethyan suture zone, Pakistan: initial melts of the Réunion hotspot? Lithos, 2010, 117, 161-171.
  • Srivastava, R. K. and Chalapathi Rao, N. V., Petrology, geochemistry and tectonic significance of Paleoproterozoic alkaline lamprophyres from the Jungel valley, Mahakoshal supracrustal belt, central India. Mineral. Petrol., 2007, 89, 189-215.
  • Chalapathi Rao, N. V., Precambrian alkaline potassic- ultrapotassic, mafic-ultramafic magmatism in Peninsular India. J. Geol. Soc. India, 2008, 72, 57-82.
  • Chalapathi Rao, N. V., Dharma Rao, C. V. and Das, S., Petrogenesis of lamprophyres from Chhota Udepur area, Narmada rift zone, and its relation to Deccan magmatism. J. Asian Earth Sci., 2012, 45, 24-39.
  • Srivastava, R. K., Petrological and geochemical characteristics of Paleoproterozoic ultramafic lamprophyres and carbonatites from the Chitrangi region, Mahakoshal supracrustal belt, central India.J. Earth Syst. Sci., 2013, 122, 759-776.
  • Mallikharjuna Rao, J., Poornachandra Rao, G. V. S. and Sarma, K. P., Precambrian Mafic magmatism of Shillong Plateau, Meghalaya and their Evolutionary History. J. Geol. Soc. India, 2009, 73, 143-152.
  • Sunilkumar, Dhanaraju, R., Varma, H. M. and Dougall, N. K., Cancrinite-tinguaite and K-rich trachyte in Nongchram-Darugiri area of East Garo Hills district, Meghalaya: a preliminary study.J. Geol. Soc. India, 1984, 25, 528-533.
  • Nambiar, A. R. and Golani, P. R., A new find of carbonatite from Meghalaya. Curr. Sci., 1985, 54, 281-282.
  • Nambiar, A. R., Alkaline magmatism in parts of East Garo Hills and West Khasi Hills districts, Meghalaya. Rec. Geol. Surv. India, 1987, 115, 25-41.
  • Nambiar, A. R., Petrology of lamprophyres from parts of East Garo Hills and West Khasi Hills districts, Meghalaya. J. Geol. Soc.India, 1988, 32, 125-136.
  • Srivastava, R. K. and Sinha, A. K., Geochemistry and petrogenesis of early Cretaceous sub-alkaline mafic dykes from SwangkreRongmil, East Garo Hills, Shillong plateau, Northeast India.J. Earth Syst. Sci., 2004, 113, 683-697.
  • Srivastava, R. K. and Sinha, A. K., The Early Cretaceous Sung Valley ultramafic-alkaline-carbonatite complex, Shillong Plateau, Northeastern India: petrological and genetic significance. Mineral.Petrol., 2004, 80, 241-263.
  • Evans, P., The tectonic framework of Assam. J. Geol. Soc. India, 1964, 5, 80-96.
  • Desikachar, S. V., A review of the tectonic and geological history of eastern India in terms of plate tectonic theory. J. Geol. Soc.India, 1974, 15, 137-149.
  • Nandy, D. R., Tectonic patterns in northeastern India. Indian J. Earth Sci., 1980, 7, 103-107.
  • Gupta, R. P. and Sen, A. K., Imprints of Ninety-East Ridge in the Shillong Plateau, Indian Shield. Tectonophysics, 1988, 154, 335-341.
  • Kumar, D., Mamallan, R. and Dwivedy, K. K., Carbonatite magmatism in northeast India. J. Southeast Asian Earth Sci., 1996, 13, 145-158.
  • Majumdar, S. K., A summary of the Precambrian geology of the Khasi Hills, Meghalaya. Geol. Surv. India Misc. Publ., 1976, 23, 311-334.
  • Das Gupta, A. B. and Biswas, A. K., Geology of Assam, Text Book Series, Geological Society of India, Bangalore, 2000.
  • Ghosh, S., Chakrabarty, S., Paul, D. K., Bhalla, J. K., Bishui, P.K. and Gupta, S. N., New Rb-Sr isotopic ages and geochemistry of granitoids from Meghalaya and their significance in middle to late Proterozoic crustal evolution. Indian Min., 1994, 48, 33-44.
  • Storey, M. et al., Lower Cretaceous volcanic rocks on continental margins and their relationship to the Kerguelen Plateau. In Proceedings of the Ocean Drilling Program, Science Results (eds Wise, S. W. Jr. et al.), 1992, vol. 120, pp. 33-47.
  • Kent, R. W., Saunders, A. D., Kempton, P. D. and Ghose, N. C., Rajmahal basalts, eastern India: mantle sources and melt distribution at a volcanic rifted margin. In Large Igneous Provinces: Continental, Oceanic and Planetary Flood Volcanism (eds Mahoney, J. J. and Coffin, M. F.), AGU Mongraph, 1997, vol. 100, pp. 145-182.
  • Kent, R. W., Pringle, M. S., Müller, R. D., Saunders, A. D. and Ghose, N. C., 39Ar/40Ar geochronology of the Rajmahal basalts, India, and their relationships to the Kerguelen Plateau. J. Petrol., 2002, 43, 1141-1155.
  • Srivastava, R. K., Heaman, L. M., Sinha, A. K. and Shihua, S., Emplacement age and isotope geochemistry of Sung Valley alkalinecarbonatite complex, Shillong Plateau, northeastern India: implications for primary carbonate melt and genesis of the associated silicate rocks. Lithos, 2005, 81, 33-54.
  • Srivastava, R. K. and Sinha, A. K., Nd and Sr isotope systematics and geochemistry of a plume-related Early Cretaceous alkalinemaficultramafic igneous complex from Jasra, Shillong Plateau, northeastern India. Geol. Soc. America Spec. Pap., 2007, 430, 815-830.
  • Sarkar, A., Datta, A. K., Poddar, B. K., Bhattacharyya, B. K., Kollapuri, V. K. and Sanwal, R., Geochronological studies of Mesozoic igneous rocks from eastern India. J. Southeast Asian Earth Sci., 1996, 13, 77-81.
  • Roeder, P. L. and Emslie, R. F., Olivine-liquid equilibrium. Contrib.Mineral. Petrol., 1970, 29, 275-289.
  • Verma, S. P., Torres-Alvarado, I. S. and Sitelo-Rodriguez, Z. T., SINCLAS: Standard igneous norm and volcanic rock classification system. Computer Geosci., 2002, 28, 711-715.
  • Rock, N. M. S., The nature and origin of ultramafic lamprophyres: Alnöites and allied rocks. J. Petrol., 1986, 27, 155-196.
  • Rock, N. M. S., Lamprophyres, Blackie & Sons Ltd., Glasgow, 1991.
  • Tappe, S., Foley, S. F., Jenner, G. A. and Kjarsgaard, B. A., Integrating ultramafic lamprophyres into the IUGS classification of igneous rocks: Rational and implications. J. Petrol., 2005, 46, 1893-1900.
  • Melluso, L., Srivastava, R. K., Petrone, C. M., Guarino, V. and Sinha, A. K., Mineralogy, magmatic affinity and evolution of the Early Cretaceous alkaline complex of Jasra, Shillong Plateau, northeastern India. Min. Mag., 2012, 76, 1099-1117.
  • Chalapathi Rao, N. V., Srivastava, R. K., Sinha, A. K. and Ravikant, V., Petrogenesis of Kerguelen mantle plume-linked Early Cretaceous ultrapotassic lamprophyres with affinities to lamproites from the Gondwana sedimentary basins, Damodar Valley, Eastern India. Earth Sci. Rev., 2014, 136, 96-120.
  • Melluso, L., Srivastava, R. K., Guarino, V., Zanetti, A. and Sinha, A. K., Mineral compositions and magmatic evolution of the Sung Valley ultramafic-alkaline-carbonatitic complex (NE India). Can.Mineral., 2010, 48, 205-229.
  • Brotzu, P., Melluso, L., d’Amelio, F. and Lustrino, M., Mafic/ ultramafic dykes and felsic intrusions with potassic to ultrapotassic affinity in the Serra do Mar province: a review. In Mesozoic to Cenozoic Alkaline Magmatism in the Brazilian Platform (eds Comin-Chiaramonti, P. and Gomes, C. B.), FAPESP, São Paulo, 2005, pp. 443-472.
  • Irvine, T. N. and Baragar, W. R. A., A guide to chemical classification of the common volcanic rocks. Can. J. Earth Sci., 1971, 8, 523-548.
  • Srivastava, R. K., Chalapathi Rao, N. V. and Sinha, A. K., Cretaceous potassic intrusives with affinities to aillikites from Jharia area: Magmatic expression of metasomatically veined and thinned lithospheric mantle beneath Singhbhum Craton, Eastern India. Lithos, 2009, 112S, 407-418.
  • Ghatak, A. and Basu, A. R., Vestiges of the Kerguelen plume in the Sylhet Traps, northeastern India. Earth Planet. Sci. Lett., 2011, 308, 52-64.
  • Andronikov, A. V. and Foley, S. F., Trace element and Nd-Sr isotopic composition of ultramafic lamprophyres from the East Antarctic Beaver Lake area. Chem. Geol., 2001, 175, 291-305.
  • Melluso, L., Sethna, S. F., D’Antonio, M., Javeri, P. and Bennio, L., Geochemistry and petrogenesis of sodic and potassic mafic alkaline rocks in the Deccan Volcanic province, Mumbai area (India). Mineral. Petrol., 2002, 74, 236-254.
  • Rogers, N. W., De Mulder, M. and Hawkesworth, C. J., An enriched mantle source for potassic basanites: evidence from Karisimbi volcano, Virunga volcanic province, Rwanda. Contrib.Mineral. Petrol., 1992, 111, 543-556.
  • Lyubetskaya, T. and Korenaga, J., Chemical composition of Earth’s primitive mantle and its variance: 1 Method and results.J. Geophys. Res., 2007, 112, 1-21.
  • Sun, S. S. and McDonough, W. F., Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and process. In Magmatism in the Ocean Basins (eds Saunders, A. D. and Norry, M. J.), Geol. Soc. Spec. Publ. 42, 1989, pp. 313-345.

Abstract Views: 292

PDF Views: 98




  • Petrogenesis of an Early Cretaceous Potassic Lamprophyre Dyke from Rongjeng, East Garo Hills, Shillong Plateau, North-Eastern India

Abstract Views: 292  |  PDF Views: 98

Authors

Rajesh K. Srivastava
Department of Geology, Centre of Advanced Study, Banaras Hindu University, Varanasi 221 005, India
Leone Melluso
Dipartimento di Scienze della Terra, dell'Ambiente e delle Risorse, Universita di Napoli Federico II, I–80134 Napoli, Italy
Anup K. Sinha
Dr K.S. Krishnan Geomagnetic Research Laboratory, Indian Institute of Geomagnetism, Allahabad 211 505, India

Abstract


An early Cretaceous potassic lamprophyre dyke, exposed near Rongjeng, East Garo Hills, Shillong plateau, north-eastern India, is a highly porphyritic rock with large phenocrysts of clinopyroxene, phlogopite, amphibole and olivine. Reversely zoned phlogopite and clinopyroxene grains indicate that some degree of interaction between magma batches of variable composition took place somewhere during the crystallization of the lamprophyre. Mineral compositions indicate its derivation from an alkaline magma comparable with those that filled the nearby Jasra potassic intrusion. Moreover, the geochemistry of the Rongjeng lamprophyre is distinctly different from that of the Damodar Valley lamproites, the Sung Valley carbonatitic-ijolitic intrusion, and the Antarctic ultramafic lamprophyres. The contrasting geochemical affinity is suggestive of heterogenous lithospheric mantle sources, rather than input of plume-related magmatism.

Keywords


Geochemistry, Lithospheric Alkaline Magmatism, Mantle Heterogeneity, Petrogenesis, Potassic Lamprophyre.

References





DOI: https://doi.org/10.18520/cs%2Fv110%2Fi4%2F649-658