Open Access Open Access  Restricted Access Subscription Access

DNA-based Methods for Detection of Genetically Modified Events in Food and Supply Chain


Affiliations
1 Division of Genomic Resources, Indian Council of Agricultural Research-National Bureau of Plant Genetic Resources, New Delhi 110 012, India
 

Efficient detection strategies for genetically modified (GM) crops need to be in compliance with regulatory frameworks and address consumer concerns. The present review describes widely employed DNA-based technologies for GM detection. Polymerase chain reaction (PCR) and real-time PCR (qPCR) are the methods that can be used for qualitative and quantitative analysis of GM crops due to their specificity, sensitivity and robustness. With increase in number and complexity of genetic elements in newly developed GM events, strategies based on matrix approach, real-time PCR-based multi-target system, loop-mediated isothermal amplification, next generation sequencing, have emerged, which could facilitate cost-effective, rapid, on-site or high throughput GM detection.

Keywords

GM Detection Strategies, GMO Matrix, Loop-Mediated Isothermal Amplification, next Generation Sequencing, Polymerase Chain Reaction, Real-Time PCR.
User
Notifications
Font Size

  • James, C., Global Status of Commercialized Biotech/GM Crops. The International Service for the Acquisition of Agri-biotech Applications (ISAAA), Ithaca, NY, 46, 2014.
  • Querci, M., Van den Bulcke, M., Žel, J., Van den Eede, G. and Broll, H., New approaches in GMO detection. Anal. Bioanal. Chem., 2010, 6, 1991–2002.
  • Viljoen, C. D., Detection of living modified organisms (LMOs) and the need for capacity building. Asian Biotechnol. Dev. Rev., 2005, 7, 55–69.
  • Gruère, G. P. and Rao, S. R., A review of international labeling policies of genetically modified food to evaluate India’s proposed rule. AgBioForum, 2007, 10, 51–64.
  • Department of Consumer Affairs, Government of India, The Gazette of India: Extraordinary Part II, Sub-rule (6) of G.S.R. 427(E) notification, Ministry of Consumer Affairs, Food and Public Distribution, 2012.
  • Randhawa, G. J. and Chhabra, R., Import and commercialization of transgenic crops: an Indian perspective. Asian Biotechnol. Dev. Rev., 2009, 11(2), 115–130.
  • Choudhary, B., Gheysen, G., Buysse, J., van der Meer, P. and Burssens, S., Regulatory options for genetically modified crops in India. Plant J. Biotechnol., 2014, 12(2), 135–146.
  • Jasbeer, K., Ghazali, F. M., Cheah, Y. K. and Son, R., Application of DNA and immunoassay analytical methods for GMO testing in agricultural crops and plant-derived products. ASEAN Food J., 2008, 15(1), 1–25.
  • Csako, G., Present and future of rapid and/or high-throughput methods for nucleic acid testing. Clin. Chim. Acta., 2006, 363(1– 2), 6–31.
  • Holst-Jensen, A. et al., Detecting un-authorized genetically modified organisms (GMOs) and derived materials. Biotechnol. Adv., 2012, 30(6), 1318–1335.
  • Novak, P. K., Gruden, K., Morisset, D., Lavra, N., Tebih, D., Rotter, A. and Žel, J., GMOtrack: Generator of cost-effective GMO testing strategies. J. AOAC Int., 2009, 92(6), 1739–1746.
  • Zel, J., Milavec, M., Morisset, D., Plan, D., Van den Eede, G. and Gruden, K., How to Reliably Test for GMOs? Springer, New York, 2012, 1st edn.
  • Lipp, M., Broadmann, P., Pietsch, K., Pauwels, J. and Anklam, E., IUPAC collaborative trial study of a method to detect genetically modified soybeans and maize in dried powder. J. AOAC Int., 1999, 82(4), 923–928.
  • Randhawa, G. J., Chhabra, R. and Singh, M., Multiplex PCRbased simultaneous amplification of selectable marker and reporter genes for the screening of genetically modified crops. J. Agric. Food Chem., 2009, 57, 5167–5172.
  • Huber, I. et al., Development and validation of duplex, triplex, and pentaplex real-time PCR screening assays for the detection of genetically modified organisms in food and feed. J. Agric. Food Chem., 2013, 61(43), 10293–10301.
  • Debode, F., Janssen, E. and Berben, G., Development of 10 new screening PCR assays for GMO detection targeting promoters (pFMV, pNOS, pSSuAra, pTA29, pUbi, pRice actin) and terminators (t35S, tE9, tOCS, tg7). Eur. Food Res. Technol., 2013, 236(4), 659–669.
  • Wang, F., Zhang, X., Feng, J., Wang, Z. and Wang, P., Establishment of a quadruplex real-time PCR for screening of genetically modified tomatoes. Eur. Food Res. Technol., 2014, 238(4), 683– 690.
  • Dinon, A. Z., Prins, T. W., Van Dijk, J. P., Arisi, A. C., Scholtens, I. M. and Kok, E. J., Development and validation of real-time PCR screening methods for detection of cry1A.105 and cry2Ab2 genes in genetically modified organisms. Anal. Bioanal. Chem., 2011, 400(5), 1433–1442.
  • Rho, J. K., Lee, T., Jung, S. I., Kim, T. S., Park, Y. H. and Kim, Y. M., Qualitative and quantitative PCR methods for detection of three lines of genetically modified potatoes. J. Agric. Food Chem., 2004, 52(11), 3269–3274.
  • Randhawa, G. J., Chhabra, R. and Singh, M., Decaplex and realtime PCR-based detection of MON531 and MON15985 Bt cotton events. J. Agric. Food Chem., 2010, 58(18), 9875–9881.
  • Randhawa, G. J., Singh, M., Chhabra, R. and Sharma, R., Qualitative and quantitative molecular testing methodologies and traceability systems for Bt crops commercialised or under field trials in India. Food Anal. Meth., 2010, 3(4), 295–303.
  • Windels, P., Bertrand, S., Depicker, A., Moens, W., Van Bockstaele, E. and De Loose, M., Qualitative and event-specific PCR real-time detection methods for StarLink maize. Eur. Food Res. Technol., 2003, 216(3), 259–263.
  • Yoke-Kqueen, C., Yee-Tyan, C., Siew-Ping, K. and Son, R., Development of multiplex-PCR for genetically modified organism (GMO) detection targeting epsps and cry1Ab genes in soy and maize samples. Int. Food Res. J., 2011, 18, 512–519.
  • Noguchi, A. et al., A novel trait-specific real-time PCR method enables quantification of genetically modified (GM) maize content in ground grain samples containing stacked GM maize. Eur. Food Res. Technol., 2014, 240(2), 413–422.
  • Singh, C. K., Ojha, A., Bhatanagar, R. K. and Kachru, D. N., Detection and characterization of recombinant DNA expressing vip3A-type insecticidal gene in GMOs – Standard single, multiplex and construct-specific PCR assays. Anal. Bioanal. Chem., 2008, 390, 377–387.
  • Liang, C. et al., Detecting authorized and unauthorized genetically modified organisms containing vip3A by real-time PCR and nextgeneration sequencing. Anal. Bioanal. Chem., 2014, 406(11), 2603–2611.
  • Randhawa, G. J., Singh, M. and Sharma, R., Duplex, triplex and quadruplex PCR for molecular characterization of genetically modified potato with better protein quality. Curr. Sci., 2009, 97(1), 21–23.
  • Grohmann, L., Busch, U., Pecoraro, S., Hess, N., Pietsch, K. and Mankertz, J., Collaborative trial validation of a construct-specific real-time PCR method for detection of genetically modified linseed event ‘CDC Triffid’ FP967. Eur. Food Res. Technol., 2011, 232, 557–561.
  • Su, C., Sun, Y., Xie, J. and Peng, Y., A construct-specific qualitative and quantitative PCR detection method of transgenic maize BVLA430101. Eur. Food Res. Technol., 2011, 233(1), 117– 122.
  • Made, D., Degner, C. and Grohmann, L., Detection of gentically modified rice: A constuct-specific real-time PCR method based on DNA sequences from transgenic Bt rice. Eur. Food Res. Technol., 2006, 224, 271–278.
  • Lee, S. H., Kim, J. K. and Yi, B. Y., Detection Methods for Biotech Cotton MON 15985 and MON 88913 by PCR. J. Agric. Food Chem., 2007, 55(9), 3351–3357.
  • Grohmann, L., Brunen Nieweler, C., Nemeth, A. and Waiblinger, H. U., Collaborative trial validation studies of real-time PCRbased GMO screening methods for detection of the bar gene and the ctp2-cp4epsps construct. J. Agric. Food Chem., 2009, 57, 8913–8920.
  • Randhawa, G. J. and Singh, M., Multiplex, construct-specific and real-time PCR-based analytical methods for Bt rice with cry1Ac gene. J. AOAC Int., 2012, 95(1), 186–194.
  • Chhabra, R., Randhawa, G. J., Bhoge, R. K. and Singh, M., Qualitative and quantitative PCR-based detection methods for authorized genetically modified cotton events in India. J. AOAC Int., 2014, 97(5), 1299–1309.
  • Kim, S. A. et al., Detection of GM papaya event 55-1 in fresh and processed papaya using duplex PCR. J. Kor. Soc. Appl. Biol. Chem., 2010, 53(2), 237–242.
  • Wu, G., Wu, Y., Nie, S., Zhang, L., Xiao, L., Cao, Y. and Lu, C., Real-time PCR method for detection of the transgenic rice event TT51-1. Food Chem., 2010, 119, 417–422.
  • Guertler, P., Huber, I., Pecoraro, S. and Busch, U., Development of an event-specific detection method for genetically modified rice Kefeng-6 by quantitative real-time PCR. J. Verbraucherschutz Lebensmittelsicherheit, 2013, 7(1), 63–70.
  • Randhawa, G. J., Sharma, R. and Singh, M., Qualitative and event-specific real-time PCR detection methods for Bt brinjal event EE-1. J. AOAC Int., 2012, 95(6), 1933–1739.
  • Mano, J. et al., Development and validation of event-specific quantitative PCR method for genetically modified maize LY038. Shokuhin Eiseigaku Zasshi, 2013, 54(1), 25–30.
  • Takabatake, R. et al., Interlaboratory study of qualitative PCR methods for genetically modified maize events MON810, Bt11, GA21, and CaMV P35S. J. AOAC Int., 2013, 96(2), 346–352.
  • Kim, J. H., Kim, E. H., Yea, M. C. and Kim, H. Y., Validation of A multiplex PCR detection kit for screening of herbicide-tolerant genes in genetically modified crops. J. Kor. Soc. Appl. Biol. Chem., 2013, 56(2), 251–254.
  • Jinxia, A., Qingzhang, L., Xuejun, G., Yanbo, Y., Lu, L. and Zhang, M., A multiplex nested PCR assay for the simultaneous detection of genetically modified soybean, maize and rice in highly processed products. Food Cont., 2011, 22(10), 1617–1623.
  • Nadal, A., Esteve, T. and Pla, M., Multiplex polymerase chain reactioncapillary gel electrophoresis: a promising tool for GMO screeningassay for simultaneous detection of five genetically modified cotton events and species. J. AOAC Int., 2009, 92(3), 765–772.
  • Xu, W., Yuan, Y., Luo, Y., Bai, W., Zhang, C. and Huang, K., Event-specific detection of stacked genetically modified maize Bt11 × GA21 by UP-M-PCR and real-time PCR. J. Agric. Food Chem., 2009, 57, 395–402.
  • Kim, S. Y., Kim, J. H., Lee, H. and Kim, H. Y., Detection system of stacked genetically modified maize using multiplex PCR. Food Sci. Biotechnol., 2010, 19(4), 1029–1033.
  • Shin, K. S., Suh, S. C., Lim, M. H., Woo, H. J., Lee, J. H., Kim, H. Y. and Cho, H. S., Event-specific detection system of stacked genetically modified maize by using the multiplex PCR technique. Food Sci. Biotechnol., 2013, 22(6), 1763–1772.
  • Randhawa, G. J., Chhabra, R. and Singh, M., Molecular characterization of Bt cauliflower with multiplex PCR and validation of endogenous reference gene in Brassicaceae family. Curr. Sci., 2008, 95(12), 1729–1731.
  • Kamle, S., Kumar, A. and Bhatnagar, R. K., Development of multiplex and construct specific PCR assay for detection of cry2Ab transgene in genetically modified crops and product. GM Crops, 74–81; doi:10.4161/gmcr.2.1.16017.
  • Randhawa, G. J., Singh, M., Chhabra, R., Guleria, S. and Sharma, R., Molecular diagnosis of transgenic tomato with osmotin gene using multiplex polymerase chain reaction. Curr. Sci., 2009, 96(5), 689–694.
  • Randhawa, G. J., Chhabra, R. and Singh, M., PCR-based detection of genetically modified tomato with AVP1D gene employing seed sampling strategy. Seed Sci. Technol., 2011, 39, 112–124.
  • Randhawa, G. J., Sharma, R. and Singh, M., Multiplex polymerase chain reaction for detection of genetically modified potato (Solanum tuberosum L.) with cry1Ab gene. Indian J. Agric. Sci., 2009, 79(5), 367–371.
  • Chaouachi, M., Malki, R. L., Berard, A., Romaniuk, M., Laval, V., Brunel, D. and Bertheau, Y., Development of a real-time PCR method for the differential detection and quantification of four Solanaceae in GMO analysis: Potato (Solanum tuberosum), tomato (Solanum lycopersicum), eggplant (Solanum melongena), and pepper (Capsicum annuum). J. Agric. Food Chem., 2008, 56(6), 1818–1828.
  • Marmiroli, N., Multiplex real-time PCR assays for simultaneous detection of maize MON810 and GA21 in food samples. Food Cont., 2013, 30(2), 518–525.
  • Chaouachi, M., Zellama, M. S., Nabi, N., Hafsa, A. B. and Saïd, K., Molecular identification of four genetically modified maize (Bt11, Bt176, MON810 and T25) by duplex quantitative real-time PCR. Food Anal. Meth., 2014, 7(1), 224–233.
  • Querci, M., Foti, N., Bogni, A., Kluga, L., Broll, H. and Van den Eede, G., Real-time PCR-based ready-to-use multi-target analytical system for GMO detection. Food Anal. Meth., 2009, 2, 325– 336.
  • Kluga, L., Folloni, S., Van den Bulcke, M., Van den Eede, G. and Querci, M., Applicability of the real-time PCR-based ready-to-use multi-target analytical systems for GMO detection in processed maize matrices. Eur. Food Res. Technol., 2012, 234, 109–118.
  • Randhawa, G. J., Singh, M., Sood, P. and Bhoge, R. K., Multitarget real-time PCR-based system: Monitoring for unauthorized genetically modified events in India. J. Agric. Food Chem., 2014, 62(29), 7118–7130.
  • Codex Alimentarious Commission Guidelines, Guidelines on performance criteria and validation of methods for detection, identification and quantification of specific DNA sequences and specific proteins in foods. CAC-GL, 2010, 74, 22.
  • Kovalic, D. et al., The use of next generation sequencing and junction sequence analysis bioinformatics to achieve molecular characterization of crops improved through modern biotechnology. Plant Genome J., 2012, 5, 149–163.
  • Wahler, D., Schauser, L., Bendiek, J. and Grohmann, L., Next generation sequencing as a tool for detailed molecular characterization of genomic insertions and flanking regions in genetically modified plants: A pilot study using a rice event unauthorised in the EU. Food Anal. Meth., 2013, 6(6), 1718–1727.
  • Zhang, D., Characterization of GM events by insert knowledge adapted re-sequencing approaches. Sci. Rep., 2013, 3; doi:10.1038/srep02839.
  • Rudi, K., Rud, I. and Holck, A., A novel multiplex quantitative DNA array based PCR (MQDA-PCR) for quantification of transgenic maize in food and feed. Nucleic Acids Res., 2003, 31, e62.
  • Bordoni, R. et al., Detection and quantitation of genetically modified maize (Bt176 transgenic maize) by applying ligation detection reaction and universal array technology. J. Agric. Food Chem., 2004, 52, 1049–1054.
  • Germini, A., Rossi, S., Zanetti, A., Corradini, R., Fogher, C. and Marchelli, R., Development of a peptide nucleic acid array platform for the detection of genetically modified organisms in food. J. Agric. Food Chem., 2005, 53, 3958–3962.
  • Leimanis, S. et al., Validation of the performance of a GMO multiplex screening assay based on microarray detection. Eur. Food Res. Technol., 2008, 227, 1621–1632.
  • Kim, J. H., Kim, S. Y., Lee, H., Kim, Y. R. and Kim, H. Y., An event-specific DNA microarray to identify genetically modified organisms in processed foods. J. Agric. Food Chem., 2010, 58(10), 6018–6026.
  • Morisset, D., Dobnik, D., Hamels, S., Žel, J. and Gruden, K., NAIMA: target amplification strategy allowing quantitative onchip detection of GMOs. Nucleic Acids Res., 2008, 36(18), e118.
  • Dobnik, D., Morisset, D. and Gruden, K., NAIMA as a solution for future GMO diagnostics challenges. Anal. Bioanal. Chem., 2010, 396(6), 2229–2233.
  • Waiblinger, H. U., Grohmann, L., Mankertz, J., Engelbert, D. and Pietsch, K., A practical approach to screen for authorised and unauthorised genetically modified plants. Anal. Bioanal. Chem., 2010, 396(6), 2065–2072.
  • Van den Bulcke, M., Lievens, A., Barbau Piednoir, E., Mbongolombella, G., Roosens, N., Sneyers, M. and Casi, A. L., A theoretical introduction to combinatory SYBR Green qPCR screening, a matrix-based approach for the detection of materials derived from genetically modified plants. Anal. Bioanal. Chem., 2010, 396(6), 2113–2123.
  • Block, A. et al., The GMO seek matrix: a decision support tool for optimizing the detection of genetically modified plants. BMC Bioinform., 2013, 14, 256–269.
  • Randhawa, G. J., Morisset, D., Singh, M. and Žel, J., GMO matrix: A cost-effective approach for screening for unauthorized genetically modified events in India. Food Cont., 2014, 38, 124– 129.
  • Notomi, T., Okayama, H., Masubuchi, H., Yonekawa, T., Watanabe, K., Amino, N. and Hase, T., Loop-mediated isothermal amplification of DNA. Nucleic Acids Res., 2000, 28(12), e63.
  • Fukuta, S., Mizukami, Y., Ishida, A., Ueda, J., Hasegawa, M., Hayashi, I., Hashimoto, M. and Kanbe, M., Real-time loop-mediated isothermal amplification for the CaMV35S promoter as a screening method for genetically modified organisms. Eur. Food Res. Technol., 2004, 218(5), 496–500.
  • Tomita, N., Mori, Y., Kanda, H. and Notomi, T., Loop-mediated isothermal amplification (LAMP) of gene sequences and simple visual detection of products. Nat. Prot., 2008, 3(5), 877–882.
  • Nagamine, K., Hase, T. and Notomi, T., Accelerated reaction by loop-mediated isothermal amplification using loop primers. Mol. Cell Probes, 2002, 16(3), 223–229.
  • Mori, Y., Nagamine, K., Tomita, N. and Notomi, T., Detection of loop-mediated isothermal amplification reaction by turbidity derived from magnesium pyrophosphate formation. Biochem. Biophys.
  • Res. Commun., 2001, 289(1), 150–154.
  • Huang, X., Chen, L., Xu, J., Ji, H. F., Zhu, S. and Chen, H., Rapid visual detection of phytase gene in genetically modified maize using loop-mediated isothermal amplification method. Food Chem., 2014, 156, 184–189.
  • Randhawa, G. J., Singh, M., Morisset, D., Sood, P. and Žel, J., Loop-mediated isothermal amplification: Rapid visual and realtime methods for detection of genetically modified crops. J. Agric.Food Chem., 2013, 61(47), 11338–11346.
  • Guan, X., Guo, J., Shen, P., Yang, L. and Zhang, D., Visual and rapid detection of two genetically modified soybean events using loop-mediated isothermal amplification method. Food Anal. Meth., 2010, 3(4), 313–320.
  • Chen, X. et al., End-point visual detection of three genetically modified rice events by loop-mediated isothermal amplification. Int. J. Mol. Sci., 2012, 13(11), 14421–14433.
  • Kiddle, G. et al., GMO detection using a bioluminescent real time reporter (BART) of loop mediated isothermal amplification (LAMP) suitable for field use. BMC Biotechnol., 2012, 12(1), 15.
  • Chen, L., Guo, J., Wang, Q., Kai, G. and Yang, L., Development of the visual loop-mediated isothermal amplification assays for seven genetically modified maize events and their application in practical samples analysis. J. Agric. Food Chem., 2011, 59(11), 5914–5918.
  • Singh, M., Randhawa, G. J., Sood, P. and Bhoge, R. K., Loopmediated isothermal amplification targeting insect resistant and herbicide tolerant transgenes: monitoring for GM contamination in supply chain. Food Cont., 2015, 51, 283–292.
  • Randhawa, G. J., Chhabra, R., Bhoge, R. K. and Singh, M., Visual and real-time event-specific loop-mediated isothermal amplification based detection assays for Bt cotton events MON531 and MON15985. J. AOAC Int., 2015, 98(5), 1207–1214.
  • Bhoge, R. K., Chhabra, R., Randhawa, G. J., Sathiyabama, M. and Singh, M., Event-specific analytical methods for six genetically modified maize events using visual and real-time loop-mediated isothermal amplification. Food Cont., 2015, 55, 18–30.
  • Mazzara, M., Grazioli, E., Savini, C. and Van den Eede, G., Event-specific method for the quantitation of maize line T25 using real-time PCR validation report and protocol. Online publication, 2005.
  • Mazzara, M., Larcher, S., Savini, C., Delobel, C. and Van den Eede, G., Event-specific methods for the quantitation of the hybrid cotton line 281-24-236/3006-210-23 using real-time PCR – validation report and protocol – Sampling and DNA extraction of cotton seeds. Online publication, 2006.
  • Yang, L., Chen, J., Huang, C., Liu, Y., Jia, S., Pan, L. and Zhang, D., Validation of a cotton-specific gene, Sad1, used as an endogenous reference gene in qualitative and real-time quantitative PCR detection of transgenic cottons. Plant Cell Rep., 2005, 24(4), 237– 245.
  • Jiang, L., Yang, L., Zhang, H., Guo, J., Mazzara, M., Van den Eede, G. and Zhang, D., International collaborative study of the endogenous reference gene, sucrose phosphate synthase (SPS), used for qualitative and quantitative analysis of genetically modified rice. J. Agric. Food Chem., 2009, 57(9), 3525–3532.
  • Mazzara, M., Cordeil, S. and Van den Eede, G., Report on the verification of an event-specific detection method for identification of rice GM-event LLRICE601 using a real-time PCR assay. Online publication, 2006.
  • Mazzara, M., Delobel, C., Grazioli, E., Larcher, S., Savini, C. and Van den Eede, G., Event-specific method for the quantification of soybean line A2704-12 using real-time PCR – validation report and protocol – soybean seeds sampling and DNA extraction. Online publication, 2007; doi:10.2788/28149.
  • Yang, L., Pan, A., Jia, J., Ding, J., Chen, J., Cheng, H., Zhang, C. and Zhang, D., Validation of a tomato-specific gene, LAT52, used as an endogenous reference gene in qualitative and real-time quantitative PCR detection of transgenic tomatoes. J. Agric. Food Chem., 2005, 53(2), 183–190.
  • Randhawa, G. J., Singh, M. and Sharma, R., Validation of ST-LS1 as an endogenous reference gene for detection of AmA1 and cry1Ab genes in genetically modified potatoes using multiplex and real-time PCR. Am. J. Pot. Res., 2009, 86(5), 398–405.
  • Savini, C., Mazzara, M., Bogni, A., Angers, A. and Petrillo, M., Event-specific method for the quantification of oilseed rape MON88302 using real-time PCR – validation report and validated method. Online Publication, 2013.
  • Mazzara, M., Foti, N., Savini, C. and Van den Eede, G., EventSpecific method for the quantitation of sugarbeet line H7-1 using real-time PCR – validation report and protocol. Online Publication, 2006; doi:10.2788/32035.

Abstract Views: 496

PDF Views: 118




  • DNA-based Methods for Detection of Genetically Modified Events in Food and Supply Chain

Abstract Views: 496  |  PDF Views: 118

Authors

Gurinderjit Randhawa
Division of Genomic Resources, Indian Council of Agricultural Research-National Bureau of Plant Genetic Resources, New Delhi 110 012, India
Monika Singh
Division of Genomic Resources, Indian Council of Agricultural Research-National Bureau of Plant Genetic Resources, New Delhi 110 012, India
Payal Sood
Division of Genomic Resources, Indian Council of Agricultural Research-National Bureau of Plant Genetic Resources, New Delhi 110 012, India

Abstract


Efficient detection strategies for genetically modified (GM) crops need to be in compliance with regulatory frameworks and address consumer concerns. The present review describes widely employed DNA-based technologies for GM detection. Polymerase chain reaction (PCR) and real-time PCR (qPCR) are the methods that can be used for qualitative and quantitative analysis of GM crops due to their specificity, sensitivity and robustness. With increase in number and complexity of genetic elements in newly developed GM events, strategies based on matrix approach, real-time PCR-based multi-target system, loop-mediated isothermal amplification, next generation sequencing, have emerged, which could facilitate cost-effective, rapid, on-site or high throughput GM detection.

Keywords


GM Detection Strategies, GMO Matrix, Loop-Mediated Isothermal Amplification, next Generation Sequencing, Polymerase Chain Reaction, Real-Time PCR.

References





DOI: https://doi.org/10.18520/cs%2Fv110%2Fi6%2F1000-1009