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Abstract: Current analysis of bridge time-dependent performance is mostly based on present test data or certain 

single approximate computational formulas. Thus, it is usually unable to combine prior knowledge of bridge 

time-dependent performances with on-site detection information effectively, and the evaluation model or 

parameters could not be updated on time. On the basis of the bridge characteristic during the time varying 

process, the Dynamic Bayesian Network (DBN), which could effectively assess bridge time-dependent 

performance, is proposed in this study. Two bridges, the performance of which is changed by internal and 

external environments, are taken as research objects. DBN is used to approximate the model of time-dependent 

performance of two bridges. Model updating is also realized by utilizing detection information. Results validate 

the feasibility and effectiveness of the proposed method. 
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1. Introduction  
 

In recent years, researchers have made numerous 

achievements in the field of bridge time-dependent 

performance and developed methods, such as the 

accelerated test method, grey system-based theory, 

artificial neural networks, and Markov chain method. 

The accelerated test method (Li, 2003) is a process in 

which the artificial acceleration process in the lab is 

applied to imitate the performance degradation 

process. The inherent error of mathematical relation 

exists in two different degradations. Thus, the 

predicted results sometimes might not be reasonable. 

The determinable mathematical model (Gode, 2014) 

applies certain deterministic mathematical models to 

simulate time-dependent performance. The 

deterministic model has the following disadvantages: 

some random uncertain factors are often ignored, and 

it is inconvenient to revise the original model when a 

new detection date is gained or a new system is 

adopted. The grey system-based theory (Jia and Chen, 

2009; Liang et al., 2002) is a time series method, 

which is unsuitable for making predictions in case of 

strong randomness and long-term periods. Artificial 

neural networks (Hasancebi and Dumlupinar, 2013; 

Huang, 2010) are extensively used in the prediction of 

bridge structure degradation. However, artificial 

neural networks do not have certain clear rules to 

follow and are sometimes unstable. The Markov chain 

method (Wellalage et al., 2015; Li et al., 2014; 

Bocchini et al., 2013) is the most widely used 

technique and approximates structure degradation by 

using transferring probability from one state to 

another. In the well-known American PONTIS 

(Thompson, 1993) and BRIDGIT (Hawk, 1995) 

systems, the Markov chain method is taken as a basis 

of theory when predicting bridge time-dependent 

performance.  
 

An important problem in the assessment of a bridge 

structure performance is that many existing methods 

or models depend on certain formulas only. 

Therefore, they could not update existing methods or 

models by detection information and could not 

comprehensively utilize the existing universal rule of 

structural degradation and test information. Dynamic 

Bayesian networks (DBN) (Murphy, 2002) are based 

on Bayesian theory, which could not only deal with 

time series data and complex structural problems, but 

also update the model on time by using detection 

information. In recent years, DBN has been applied 

and developed in many fields, such as state 

identification (Popa et al., 2010) and video analysis 

(Swears et al., 2010). However, its research and 

extension is limited in the structural engineering field 

and focuses mainly on static Bayesian networks. 

Faber et al. (2002) assessed the risk of a concrete 

offshore platform’s decommissioning by using 

Bayesian probability networks. He mainly used 

Bayesian probability networks to perform a sensibility 

analysis and improve the risk model. Langseth and 

Portinale (2007) established a computing framework 

that used Bayesian networks to perform the structural 

reliability analysis. Attoh and Bowers (2006) 

determined that Bayesian networks are more suitable 

than the fault tree method for demonstrating the 

bridge degradation process.  
 

DBN is applied to the assessment of bridge time-

dependent performance in this study. The DBN model 

is established and could effectively describe the time-
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such as Markov chain Monte Carlo algorithms 

(Doucet et al., 2000) and particle filtering 

(Arulampalam et al., 2002). The deterministic 

algorithm is restricted by its finite DBN topological 

structure, which is not practical. The MCMC 

algorithm has strong applicability, but its computing 

efficiency could not be guaranteed. The particle 

filtering algorithm is suitable for online processing, 

but it lacks precision. Exact inference algorithms 

include forward-backward algorithm (Murphy, 2002), 

interface algorithm (Murphy, 2002), and frontier 

algorithm (Langseth and Bangso, 2001).  
 

When the conditional probability distributions (CPD) 

of all random variables are linear Gaussian, the DBN 

can be decomposed and transformed into KFM. The 

forward-backward algorithm based on the Kalman 

smoother (Murphy, 2002), which is the one of exact 

inference algorithms, is applied to the inference in this 

study; see Appendix for details. 
 

5. Assessment of bridge time-dependent 

performance by considering the change of internal 

environment 
 

A simply-supported reinforced concrete T-shaped 

beam bridge built in 1966 is considered in this paper. 

This bridge has a total of six spans that are 15 m long 

each. Figure 3 shows the cross section of a T-shaped 

beam.  
 

The structural performance degradation caused only 

by the reduced structural resistance is considered, 

while the time-dependent load is disregarded. As for 

the reinforced concrete structure, two major factors 

influence the structural performance degradation, 

namely, reinforcing bar corrosion and reinforcement 

bar strength degradation (the degradation of bonding 

behavior between the reinforcement bar and concrete 

is not considered in this paper). 
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Fig. 3: T-beam cross section (unit: cm) 
 

The time-varying regularity of the two factors and 

some priori formulas are given as follows: 
 

(1) Reinforcing steel corrosion. Only the reinforcing 

steel corrosion caused by chloride erosion is 

considered. First, with the use of Fick’s second law, 

the corrosion’s starting time is obtained as 
 

2
2

1

0

erf
4

s cr
i

c s

Cl Clc
T

D Cl Cl




  

   
    ,                 (3) 

where c is the cover thickness, cD is the chloride 

diffusion coefficient, crCl is the critical chloride 

concentration, 0Cl is the initial chloride concentration, 

and sCl is the surface chloride concentration.  
 

The rate of corrosion after corrosion at time t  is 

subsequently given as (Vu and Stewart, 2000) 
 

0.29( ) 0.85( )corr corr ii t i t T     ,            (4) 
 

where 
1.6437.8(1 27 / ( 13.5)) /corr ci f c   , and cf  is the 

compressive strength of concrete. 
 

Considering the uniform corrosion, the diameter of 

the corroded reinforcement bar at time t  can be 

obtained as (Stewart and Rosowsky, 1998) 
 

0( ) 0.0232( ) ( )i corrD t D t T i t    ,        (5) 
 

where 0D  is the initial diameter of the reinforcement 

bar. 
 

(2) Degradation of reinforcement bar strength. The 

strength degradation of concrete has minimal 

influence on the structural performance. Thus, its 

influence is ignored. The relation between the yield 

strength of the reinforcement bar and the loss of 

cross-sectional area of the corroded reinforcement bar 

is shown as follows: 
 

0

( )
( ) 1

p

y y y

A t
f t f

A


 
  
 

,                   (6) 

 

where 0yf is the yield strength of the reinforcement 

bar before corrosion, ( )yf t  is the yield strength of the 

corroded reinforcement bar at time t , y  is an 

impact factor, and ( )pA t  is the loss of the cross-

sectional area of the corroded reinforcement bar at 

time t . 
 

(3) Resistance of reinforcement concrete structure 

after corrosion. The flexural capacity of the 

reinforced concrete beam after corrosion can be 

written as  
 

1 0

1

( ) ( 0.5 )

( ) ( ) / ( )

b c

y c

M t k f bx h x

x A t f t f b





 



            (7) 

 

where ( )M t  is the flexural capacity of the reinforced 

concrete beam, bk  is the model uncertainty factor, b  

is the width of the section, 0h  is effective depth of the 

section, 1  is the stress-block factor for concrete, and 

( )A t  is the section area of tensile reinforcement after 

corrosion, which can be obtained by using Eq. (5). 
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The compressed corroded reinforcement is not 

considered.  
 

Eqs. (3)–(7) are prior knowledge obtained from 

previous degradation rules of bridge time-dependent 

performance. Prior knowledge does not seem to be 

working well at all times in practical projects. In the 

following paragraphs, prior knowledge achieved from 

Eqs. (3)–(7) and detection information will be 

combined by the DBN model and will be revised by 

updating the DBN model. 
 

Major parameters involved in Eqs. (3)–(7) are 

considered variable nodes in DBN. The statistical 

characteristics of variables are given in Table 1. 
 

Table 1: Statistical characteristics of variables 

(example 1) 
 

Variable Mean 
Variation 

coefficient 

surface chloride concentration 

Cls/(kg/m
3
) 

39.200 0.160 

critical chloride concentration 

Clcr/(kg/m
3
) 

11.025 0.160 

initial chloride concentration 

Cl0/(kg/m
3
) 

0.735 0.100 

chloride diffusion coefficient 

Dc/(cm
2
/a) 

23.360 0.310 

compressive strength of 

concrete fc/Mpa 
27.800 0.110 

cover thickness c/mm 30.500 0.050 

initial diameter of 

reinforcement bar D0/mm 
20.000 0.025 

yield strength of reinforcement 

bar before corrosion fy0/Mpa 
303.300 1.014×10

-1 

 

The limit value of flexural capacity is set 

as 300cM kN m . The corresponding limit state 

function (LSF) can then be written as 
 

( )cg M M t   .                       (8) 
 

The LSF is expressed as variable E  in the DBN 

model. 0E   and 0E   indicate failure and safety, 

respectively. 
 

The corresponding DBN model is shown in Figure 4. 

The transition matrices of time invariant variables, 

such as ( ) ( 1)s t s tCl Cl  ， ( ) ( 1)cr t cr tCl Cl  ，

0( ) 0( 1)t tCl Cl  ， ( ) ( 1)c t c tD D  ， ( ) ( 1)c t c tf f  ，

( ) ( 1)t tc c  ， 0( ) 0( 1)t tD D  , and 0( ) 0( 1)y t y tf f  , 

are diagonal unit matrices. The CPDs between other 

nodes are obtained by using Monte Carlo simulation 

and parameter learning method. 
 

The time interval is supposed to be 1t   year, and 

the total lasting time is 80T  . A detection result 

was obtained in 2006, which is 40 456b kN m . 

Through the parameter learning method based on the 

EM algorithm and the inference based on the 

forward–backward algorithm, the original and 

updated results of the flexural capacity M are shown 

in Figure 5. 
 

Figure 5 shows that the DBN model can effectively 

approximate the degradation process of sectional 

flexural capacity caused by reinforcement steel 

corrosion and fully exhibits the information updating 

ability of DBN. The detection information seems to 

be ‘bad’ evidence because the updated assessment of 

flexural capacity has a certain decrease. Results 

indicate that prior experience or theoretical equation 

could not be applied in all cases. The on-site 

information of the existing bridge should be 

considered. In other words, prior knowledge of the 

bridge time-dependent performance and detection 

information should be combined and fully used.  
 

With the addition of functional variable E  into the 

network, a reliability analysis based on the Monte 

Carlo simulation method was conducted, and the 

excellent expandability of DBN was demonstrated. 

Figure 6 shows the comparison results of reliability 

between the original and updated models, and 

indicates that the reliability value has changed, with 

the updated reliability being smaller than the original 

one. 
 

DBN can also update the original distribution of the 

node variable by model inference. Figure 7 provides 

the original and updated results of the probability 

density function (PDF) of some variables when 

30t  . After the updating, the means of compressive 

strength of concrete ( cf ), initial diameter of 

reinforcement bar ( 0D
), and yield strength of 

reinforcement bar before corrosion ( 0yf
) were 

reduced. Their standard deviations were also 

decreased considerably. If a more observed date is 

achieved, then the probability distribution will be 

more realistic. Another detection result was obtained 

in 2011, which is 45 441b kN m
. The twice-updated 

results (also at 30t  ) are shown in Figure 8. After 

the second updating, the means of cf  and 0D
 increased 

and were even greater than the original results, 

whereas the mean of 0yf
 decreased further. 

Remarkably, all standard deviations of the three 

variables decreased further, thereby indicating that the 

accumulated detection information will be helpful in 

preventing the discrete degree of variables from 

decreasing. 
 

6. Assessment of bridge time-dependent 

performance by considering the change of external 

environment 
 

A large cantilever prestressed concrete box beam 

bridge is selected to apply the introduced method. 
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Fig. 4: DBN model of example 1 (influence of internal 

environment on bridge time-dependent performance). 
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Fig. 5: Updating of the flexural capacity. 
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Fig. 6: Updating of the reliability. 
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(b) 0D
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Fig. 7: Updating of the distributions of 
( 30)c tf  、 0 ( 30)tD  、 0 ( 30)y tf 

 with first detection 

results ( 40 456b kN m ). 
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Fig. 8: Updating of the distributions of 
( 30)c tf  、 0 ( 30)tD  、 0 ( 30)y tf 

 with two-times detection 

results ( 40 456b kN m 45 441b kN m ). 
 

6. Assessment of bridge time-dependent 

performance by considering the change of external 

environment 
 

A large cantilever prestressed concrete box beam 

bridge is selected to apply the introduced method. The 

spans of the bridge beam are 4×42 m long and 33.5 m 

wide. Each cantilever is 7.174 m long and 0.25 m 

thick. The bottom plate is 0.175 m wide and 0.25 m 

thick. The cross section of the bridge is shown in 

Figure 9. 
 

 
 

Fig. 9: Half of cross section (unit: cm). 
 

In view of the transverse cracked problem of concrete 

in the root of the large cantilever, the time-varying 

transverse stress in the root of cantilever of mid-span 

caused by the external environment is studied. The 

live load, negative temperature gradient, and 

shrinkage are set as the main variables of the external 

environment. 
 

(1) Live load. The time-varying live load in the future 

is predicted based on a statistical report (2013) on the 

growth rate of local traffic. For convenience of 

expression, the live load is replaced by a live load 

ratio, which is the predicted value divided by the load 

standard value in the Chinese General Code for 

Design of Highway Bridges and Culverts (2004). 

After fitting, the live load ratio at time t  is given as 
 

22
3 41 2 (( )/ )(( )/ )

1 2( )
t a at a aF t e e      ,         (9) 

 

where 1 ， 1a ， 2a ， 2 ， 3a , and 4a are fitting 

parameters. 
 

2) Max temperature difference in the negative 

temperature gradient. According to the local climate 

feature, the annual max temperature difference is 

supposed to be stable, and the max temperature 

difference is considered a time-invariant variable 
 

( ) 4gT t   .                              (10) 
 

(3) Shrinkage strain. With the shrinkage strain 

equation in the Code for design of highway reinforced 

concrete and prestressed concrete bridges and 

culverts (2004) combined with the actual structure of 

the bridge, the shrinkage strain at time t  is fitted as 
 

1 2
1 2

-
( ) - e + e

b t b t
S t   ,                        (11) 

 

where 1 , 1b , 2 , and 2b  are fitting parameters. 
 

The max transverse stress value ( )t  in the root of 

the cantilever is obtained by evaluating ( )F t , ( )gT t , 

and ( )S t  by using Eqs. (9)–(11) and implementing 

the structural computation by using the ANSYS 

software. Similar to Eqs. (3)–(7), Eqs. (9)–(11) are 

also prior knowledge obtained from the subjective 

prediction and specification by specialists. When they 

are used in actual situations, the results might not be 

reasonable.  
 

In the following paragraphs, the actual detection 

information is utilized by updating the DBN model to 

revise prior knowledge. The major parameters 

involved in Eqs. (9)–(11) are set as variables in DBN. 

The statistical characteristics of variables are given in 

Table 2, while the corresponding DBN model is 

shown in Figure 10. 
 

Table 2: Statistical characteristics of variables 

(example 2) 
 

Variable Mean Variation coefficient 

1  3.305 0.100 

1a  67.860 0.050 

2a  54.290 0.050 

2  5.118×10-1 0.100 

3a  11.770 0.050 

4a  10.680 0.050 

1  19.120 0.060 

1b  1.423×10-2 0.020 

2  14.480 0.060 

2b  2.278×10-1 0.020 

gT  -4.000 0.110 
 

The time interval is supposed to be 1t  year, and 

the total lasting time is 20T  . The detection result 

at 6t   is assumed as 6 0.7MPab  
. The original and 

updated results of the max transverse stress in the root 

of cantilever ( ) obtained by using the parameter 
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learning and the inference methods are shown in 

Figure 11. 
 

 
 

Fig. 10: DBN model of example 2 (influence of 

external environment on bridge time-dependent 

performance). 
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Fig. 11: Updating of the transverse stress. 
 

Figure 11 shows that the DBN model has been 

applied successfully in the assessment of bridge time-

dependent performance when the external 

environment change is considered. The DBN model 

can efficiently approximate the time-dependent 

process of transverse stress caused by live load action, 

negative temperature gradient, and shrinkage action. 

From the view of cracking resistance, 6 0.7MPab    

seems to be ‘good’ evidence, because the updated 

transverse compressive stress is greater than the 

original one. 
 

Figure 12 shows the original and updated results of 

the PDF of the live load ratio variable F , max 

temperature difference gT , and shrinkage stress 

variable S , which are evaluated at 4t  . The figure 

indicates that the probability distribution of each node 

variable changed after updating. The live load ratio 

has the highest sensibility, in which both mean and 

standard deviation reduced considerably. Although 

the sensibility of the shrinkage strain and max 

temperature difference is smaller than that of the live 

load ratio, both are affected by the detection 

information, and their means are lower than the 

original ones.  
 

Another detection result at 12t   is considered, in 

which 12 0.5MPab  
. Figure 13 shows the twice- 

updated PDF results of F , gT
, and S , which are 

evaluated at 10t  . The figure indicates that all the 

means (absolute value) of F , S , and gT
 after the 

second update decrease further compared with the 

result that was updated for the first time, in which the 

decrease of F is the largest. The standard deviation of 

three values had different degrees of decrease (the 

standard deviation of gT
 between the first update and 

the second update has little difference), which means 

that the discrete degree of the variable was reduced. 
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Fig. 12: Updating of the distributions of ( =4)F t , 
( =4)gT t  and ( =4)S t  with first detection results 

( 6 0.7MPab  
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Fig. 13: Updating of the distributions of ( =10)F t , 
( =10)gT t  and ( =10)S t  with two-times detection 

results ( 6 0.7MPab  
, 12 0.5MPab  

). 
 

7. Conclusions 
 

This study analyzed bridge time-dependent 

performance. A series of methods for the application 

of DBN to the assessment of bridge time-dependent 

performance was proposed. The main contributions of 

this study can be summarized as follows: 
 

(1) DBN is taken as a complicated causal network 

combined with time series. DBN has unique 

advantages in dealing with time series data during the 

bridge time-dependent process and in describing 

multi-layer structures. This study suggests DBN as a 

tool to approximate the bridge time-dependent process 

and shows the application potential of DBN in the 

field of bridge structural analysis. 

(2) A simply-supported reinforced concrete T-shape 

beam bridge influenced by the internal environment is 

taken as a research object. DNB is applied 

successfully to approximate the degradation process 

of sectional flexural capacity. A large cantilever 

prestressed concrete box beam bridge influenced by 

the external environment is taken as another object. 

The time-dependent process of transverse stress in the 

root of the cantilever caused by live load, shrinkage, 

and temperature difference in the negative 

temperature gradient is also realized successfully by 

DBN. 

(3) The model updating of the two bridges is achieved 

by detection information. Calculation results show 

that DBN could make compound use of prior 

knowledge and on-site detection information. 

Detection information could also be used to update 

and revise the original model continuously. 

Meanwhile, the probability distribution of node 

variable can be updated through message passing 

among the nodes in DBN. The updating will be 

helpful to ensure the decrease of the discrete degree of 

variables. 

(4) DBN also has a good ability to expand the 

network. In the case of the simply-supported 

reinforced concrete T-shape beam bridge, reliability 

computing is successfully realized by DBN, and the 

reliability is also updated because of the probability 

distribution of node variables has been updated. 
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9. Appendix 
 

9.1. Parameter Learning 
 

With X  as a hidden variable and Y  as an observed 

variable, the log-likelihood of observed data can be 

expressed as 
 

( ) log ( ) log ( , )L θ P θ P θ d  XY X Y X .      (A.1) 
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Using Jensen’s inequality is the basic concept of the 

EM algorithm. For any concavity function f , the 

following inequality can be obtained by utilizing 

Jensen’s inequality: 
 

( )j j j j

j j

f y f y 
 

 
 
  ,                  (A.2) 

 

where 1j

j

  . The log-likelihood function is the 

concavity function; thus, according to Eq. (A.2), Eq. 

(A.1) can be rewritten as follows:  
 

( ) log ( , )

( , )
log ( )

( )

( , )
( ) log

( )

( ) log ( , ) ( ) log ( )

, )

X
L θ P θ d

P θ
q d

q

P θ
q d

q

q P θ d q q d

H q θ







 

 







 

X

X

X X

X Y X

X Y
X X

X

X Y
X X

X

X X Y X X X X

,  (A.3) 

 

where q  meets ( ) 1q d X X X  and 0 ( ) 1q X . 
 

, )H q θ  is maximized with respect to q  and θ in 

turn. The two basic steps of the EM algorithm are 
 

E-step:  1 arg max , )k k
q

q H q    .              (A.4) 

M-step:  1 1arg max , )k kH q


    .            (A.5) 
 

The flowchart of the parameter learning of the linear 

Gaussian DBN is shown in Figure A.1. 
 

 
 

Fig. A.1: Flowchart of parameter learning of linear 

Gaussian DBN. 
 

9.2. Inferences  
 

(1) Forwards pass 
 

( , )
t t t t

x V  is denoted as the mean and covariance of 

1:( )t tP X y . According to Eq. (2), the forward operator 

is defined as 

 

1 1 1 1
( , , ) Fwd( , , ; , , , )t t t t t tt t t t t t t t   

x V L x V y A B Q R .  (A.6) 
 

First, the predicted mean and variance are calculated. 
 

1 1 1

1 1 1

t t t t

t t t t

  

  




 

x Ax

V AV A Q
 .             (A.7) 

 

The error in prediction, variance of the error, Kalman 

gain matrix, and conditional log-likelihood are then 

computed. 
 

1

1

1

1

log ( ; , )

t t t t

t t t

t tt t

t t tN









 


 







e y Bx

S BV B R

K V B S

L e 0 S

 .                  (A.8) 

 

Finally, the mean and predicted value of variance are 

updated. 
 

1

1 1
( )

t tt t t t

t t t tt t t t t t



 

 



   

x x K e

V I K B V V K S K
 .  (A.9) 

 

(2) Backwards pass 
 

The backward operator is defined as follows 
 

1 11, 1 1
( , , ) Back( , , , ; , )t tt T t T t t T t T t T t t t t    

x V V x V x V A Q (A.10) 
 

First, the predicted mean and variance are computed 

as before. 
 

11

1 1 11

tt t t t

t t tt t t t



  




 

x A x

V A V A Q
.          (A.11) 

 

The smoother gain matrix is then estimated. 
 

1

1 1t tt t t t



 
J V A V  .                    (A.12) 

 

Finally, the estimates of mean, variance, and cross 

variance 1 1:1,
Cov[ , ]t t Tt t T 

V X X y  are calculated. 
 

1 1

1 1

11,

( )

( )

tt T t t t T t t

t tt T t t t T t t

tt t T t T

 
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   


  

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x x J x x

V V J V V J

V J V
.      (A.13) 
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