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Abstract: To address the performance bottlenecks of existing methods for change detection of hyperspectral 

remote sensing (HSRS) images, a new scheme for change detection of HSRS based on deep belief network 

(CDHSRS-DBN) is proposed. First, the HSRS images collected at two different phases (dual-temporal HSRS 

images) are pre-processed and registered, and then the spectral-difference images of the dual-temporal images 

are computed. Next, the endmember spectrums and the abundance-difference images are extracted using the 

pixel unmixing method based on independent component analysis (ICA). The low-layer feature vector of deep 

learning in CDHSRS-DBN adopts the integrated feature vector that consists of the pixel spectral-difference 

vector, endmember abundance-difference vector and the pixel spectral feature angle vector. Finally, a deep 

belief network (DBN) model that contains multi-layer restricted Boltzmann machines (RBM) and a support 

vector machine (SVM) is devised, and the weights of connections between visible and hidden layers are 

adjusted through pre-training. The accuracy of change detection is further improved by fine-tuning all the 

weights via the SVM classifier. In order to evaluate the performance of the proposed CDHSRS-DBN method, 

four pairs of EO-1 Hyperion test images at different phases, which collected in four different experimental 

zones, are used as the test data and CDHSRS-DBN is compared with six other typical HSRS change detection 

algorithms (CDHSRS-SCD, CDHSRS-MPD, CDHSRS-ICA, IR-MAD, CD-PCA and PCCD). The experiments 

focus on the detection of land-use changes. The average recall and precision reach 90.39% and 87.10%, 

respectively. The average value of F-Score and time consumption is 0.8871 and 242.5, respectively. 

Experimental results demonstrate the better performance of CDHSRS-DBN to detect changes of multi-temporal 

HSRS images accurately and efficiently. 
 

Keywords: Hyperspectral Remote Sensing Images, Change Detection, Deep Belief Network, Pixel Unmixing, 

Restricted Boltzmann Machines 
 

 

1. Introduction 
 

Detecting changes in remote sensing images refers to 

automatic determination and analysis of changes that 

occur in ground objects by using remote sensing 

images collected at different phases in the same 

region. These changes in ground objects include 

variations of spectral features and spatial features [1-

4]. HSRS images have hundreds, even thousands, of 

continuous and narrow wave bands, and they are very 

helpful in recognizing details of ground objects. 

Multi-temporal, high-dimensional spectral 

information can reveal changes that cannot be 

detected by multi-spectral data. In this context, it is 

very significant to detect changes of ground objects 

by fully exploiting multi-temporal, hyperspectral 

images. However, hyperspectral data is usually high-

dimensional, non-linear and has many mixed pixels. 

Hence, automatic change detection of HSRS is not 

only the important academic frontier in remote 

sensing applications research, but also a complicated 

machine learning issue that needs to be further 

explored [4]. 
 

Currently, there have been many researches on the 

change detection of HSRS images across the world. 

Traditional methods for HSRS change detection relies 

on the classical single-band or multi-spectral change 

detection theories. Their performance in HSRS 

change detection is limited. Typical examples of the 

traditional methods for HSRS change detection 

include the linear transform-based change detection 

method [1-8], post-classification change detection 

method [9], abnormal change detection method [10-

11], and analysis-based change detection method [12-

13]. Most of existing change detection algorithms rely 

on linear transform, such as the Principal Component 

Analysis (PCA) method [2-4], the Multivariate 
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Alteration Detection (MAD) method [5], the 

Iteratively Reweighed MAD (IR-MAD) method [6], 

the Covariance Equation (CE) method [7] and the 

ChronoChrome (CC) method [8], et al. Currently, the 

used learning algorithm based on linear transform is 

unsupervised, and it is difficult to choose appropriate 

thresholds. Moreover, it cannot guarantee the 

discrimination performance of the obtained linear sub-

space [1-8]. The post-class detection method can 

make full use of the information in each image and 

eliminates the need to consider external differences 

between two images, but the classification error of 

any image affects the detection accuracy and is prone 

to be accumulated [9]. In the abnormal change 

detection method, the focus is on detecting anomalies 

in difference or ratio images, and it is very effective in 

detecting tiny changes in images [10,11]. The 

analysis-based change detection method can make full 

use of the hyperspectral change vector to analyze the 

difference image and detect different types of 

changes; but it ignores the relationship between the 

spectrums of ground objects before and after changes 

which occur to the HSRS images. Thus, it cannot 

accurately analyze the changes of a single ground 

object over time [12-13]. To sum up, the traditional 

detection methods are inaccurate. To address this 

problem, some new change detection algorithms of 

HSRS images have been developed worldwide, such 

as those based on Tensor Factorization [14], 

Orthogonal Subspace Mapping [15], multi-source 

object feature support [16], pixel unmixing [17] and 

ICA [18]. These algorithms achieve improvement in 

detection accuracy. However, some of these novel 

methods only focus on one aspect of the problem and 

fail to provide a complete and systematic solution, or 

merely adopt the shallow-structure machine learning 

algorithms like SVM and back propagation (BP) 

neural network. The limitations of these methods lie 

in their low ability to represent complicated functions 

when there are a limited number of samples and 

computing units. Its limited generalization ability in 

the face of complicated classification and change 

detection problems becomes the bottleneck for 

accurate and efficient change detection in HSRS 

images. 
 

Deep learning is emerging in recent years as a new 

method to address the limitations above. As a new 

research focus on machine learning, deep learning is 

very capable of representing functions by simulating 

the multi-layer operation of the human brain. In deep 

learning, low-layer features are combined to form 

more abstract high-layer representations, property 

types or features, and to yield the layered feature 

representation of the data. In this way, it can obtain 

more fundamental features of the input data [19]. 

Compared with the shallow-structure network, the 

deep network structure which consists of multiple 

non-linear mapping layers can represent complicated 

functions and classify complicated classes more 

effectively and efficiently [20, 21]. In deep learning, 

the multi-layer structure is used to implement 

unsupervised learning of different types of features in 

different layer respectively. The deep neural network 

combines the advantages of supervised and 

unsupervised learning to learn high-dimensional data 

sets more effectively. The deep learning concept is 

emerging as a promising solution to HSRS change 

detection. It is of great theoretical significance to 

study this issue as it has great potential of being used 

in various applications. DBN is a widely used and 

extensively studied deep learning model. Due to its 

ability to classify high-dimensional data more 

effectively by combining advantages of supervised 

and unsupervised learning, it has been successfully 

applied to automatic labeling of remote sensing 

images [22], classification of scenarios in high-

resolution aerial images [23], recognition of small 

images, natural language machine learning [25], 

classification of remote sensing images with high 

spatial resolution [26], face recognition [27], HSRS 

image classification [28] and so on. 
 

To eliminate the performance bottleneck of existing 

HSRS change detection methods, this paper proposes 

a DBN-based HSRS images change detection scheme 

called CDHSRS-DBN. First, linear pixel unmixing is 

done to obtain the abundance maps of each 

endmember and the abundance vector of each pixel in 

multi-temporal HSRS images. The endmember 

abundance-difference image of multi-temporal HSRS 

images is calculated. Next, a deep belief neural 

network which contains multi-layer RBM is designed, 

and the weights of connections between visible and 

hidden layers are adjusted through pre-training. 

Finally, the traditional BP network is replaced with 

SVM, and the parameters of CDHSRS-DBN are fine-

tuned and globally optimized using a few labeled 

samples. In this way, the changes detection of HSRS 

images can be performed more accurately, efficiently 

and automatically. 
 

2. SVM-based Deep Belief Neural Network (DBN-

SVM) 
 

2.1. Principle of DBN-SVM 
 

DBN is a typical deep learning network model 

proposed by G. E. Hinton [29] in 2006. The 

traditional DBN model usually consists of a multi-

layer unsupervised RBM network and a supervised 

single-layer BP neural network. In DBN, the RBM at 

each layer is pre-trained layer by layer; the output of 

the hidden layer of the low-layer RBM is regarded as 

input to the visible layer of the high-level RBM. At 

the fine-tuning stage, the BP network is trained 

through supervised learning. The error between the 

actual output and the expected output is back-

propagated layer by layer in order to fine-tune all of 

the weights of the DBN [22, 23]. DBN is a 

probability-generating model that consists of multiple 

layers of RBN. Original parameters between two 

neighboring RBM layers are learned layer by layer 
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using the greedy algorithm. The training process of 

the RBM network can actually be regarded as 

initialization of weights of the BP network. This 

provides a solution to the problem of DBN where the 

BP network is prone to be stuck in local optimization 

and have a long training time due to random 

initialization of weights in the BP network [24]. 
 

Because the features of HSRS images have a high 

dimensionality (i.e., the number of wave bands) and it 

is challenging to obtain labeled samples, substituting 

SVM for the traditional BP algorithm can effectively 

avoid the dimensionality curse and local optimization, 

improve the global optimization efficiency of DBN 

parameters and enhance the training convergence 

speed. Hence, we implement supervised learning by 

substituting SVM for the traditional BP algorithm and 

globally fine-tune DBN. The structure of the SVM-

based deep belief network is shown in Figure 1. 
 

 
 

Figure1: Structure of the DBN-SVM model 
 

2.2. The structure of RBM 
 

The RBM in each layer of DBN-SVM consists of two 

sublayers: the hidden and the visible. The visible 

sublayer is mainly responsible for sample inputting 

and filtering, while the hidden sublayer is designed to 

perform data processing, analysis and output. There 

are two-direction connections between the elements in 

the hidden sublayer and the elements in the visible 

sublayer. However, there is no connection between 

elements in the same sublayer in order to enable 

parallel processing. The structure of the RBM in 

DBN-SVM is illustrated in Figure 2 [29], where the 

hidden and visible layers have m and n neurons, 

respectively. The visible-layer vector v=(v1,v2…..vn), 

the hidden-layer vector h=(h1,h2….hm), where vi 

denotes the status of the i
th

 neuron in the visible layer, 

hj denotes the status of the j
th

 neuron in the hidden 

layer; c1~cm and b1~bn denote the offset of neurons in 

the hidden and visible layers, and Wij denotes the 

weight of connection between nodes hi and vj. 
 

 
 

Figure 2: The RBM structure of DBN-SVM 
 

The RBM of DBN-SVM is an energy-based model. 

Thus, the energy of RBM can be computed as 

Equation (2-1) [26]: 
 

( , ) ' ' 'E v h b v c h h Wv   
                        (2-1) 

 

Based on this energy function, we obtain the joint 

probability distribution of (v,h), P(v,h), as shown in 

Equations (2-2) and (2-3)[26], where S denotes the 

normalized factor. In practical applications, the key to 

P (v,h) is to compute the activation probability of each 

neuron at the visible and hidden layers and to 

calculate the optimal values of b, c, W and other 

parameter vectors. 
 

( , )1
( , ) E v hP v h e

S


                          (2-2) 

( , )E v h

v h

S e
                            (2-3) 

 

Because there is no connection between neurons in 

the hidden and visible layers, given the status of 

neurons in the hidden layer, the activated status of 

each neuron in the visible layer is mutually 

independent. Hence, the activation probability of the 

i
th

 neuron in the visible layer can be computed as 

Equation (2-4) [23]: 
 

( ' )

1
( 1)

1 i
i a h W

p v
e
 

 
                    (2-4) 

 

Given the status of neurons in the visible layer, the 

activated status of each neuron in the hidden layer is 

mutually independent. Hence, the activation 

probability of the j
th

 neuron in the hidden layer can be 

computed as Equation (2-5) [23]: 
 

( ' )

1
( 1)

1 j
j b v W

p h
e
 

 
                    (2-5) 

 

In the RBM of DBN-SVM, samples are trained 

iteratively layer after layer in order to compute b, c, W 

and other parameter vectors, and to fit the given 

training data. The parameter vectors (e.g., b, c and W) 

can be obtained by computing the maximal log-

likelihood function of the activation probability in the 

training set [26]. Each parameter can be updated using 

the contrastive divergence (CD) algorithm proposed 

by Hinton in [30]. 
 

3. DBN-Based Change Detection of HSRS Images 

(CDHSRS-DBN) 
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The procedures of the proposed DBN-based method 

for change detection of HSRS images (CDHSRS-

DBN) are shown in Figure 3. The imaging of 

hyperspectral sensors is subject to interference from 

many factors, and bias exists in most of the original 

HSRS images. Hence, the HSRS images need to be 

pre-processed first. The pre-processing methods for 

HSRS images include problematic wave bands 

elimination, radiation correction, bad line restoration, 

strip elimination, smile effect removal, atmosphere 

correction, spectral reflectivity inversion and 

calibration [25]. Problematic wave bands refer to the 

abnormal wave bands which are non-calibrated, 

overlapped, heavily corrupted with noise, influenced 

by steam or confirmed to provide little information on 

the ground. Moreover, the HSRS images that are 

captured at different phases and imaging angles have 

different reference systems. So, it is necessary to 

precede change detection with precise image 

registration and to make the root-mean-square (RMS) 

error of registration less than 0.5. After pre-processing 

and registration, we need to compute the spectral 

difference-image, unmix the pixels and extract the 

endmember spectrums via the ICA (independent 

component analysis) method which are mentioned in 

the literatures [18] and [31]. In this paper, ICA is done 

on the difference-image to obtain the independent 

components (endmembers) and the abundance-

difference of each endmember. Finally, we obtain the 

endmember abundance difference-images. 
 

 
 

Figure 3: Procedures of CDHSRS-DBN 
 

We define an integrated feature vector [δ, Δsp, θ], 

where δ denotes the endmember abundance change 

vector, Δsp denotes the continuous spectral-difference 

vector, and θ denotes the included angle of the 

spectral feature vectors in different phases. The vector 

[δ, Δsp, θ] is used as the low-layer feature vector of 

DBN deep learning. The labeled samples are extracted 

from field survey and relevant materials, and the 

DBN-SVM is constructed and pre-trained layer by 

layer. Then, a small number of labeled samples are 

input to the top-layer SVM classifier for supervised 

training. Feedback on the RBM at each layer is 

obtained using the SVM classifier to fine-tune and 

globally optimize the parameters of DBN-SVM until 

the parameters of DBN-SVM at each layer meet the 

requirements. Finally, the trained DBN-SVM model is 

used together with the non-labeled samples for 

performance evaluation. In CDHSRS-DBN training, 

the number of network layers and the number of 

neurons in the hidden layers have great influence on 

change detection. Experiments are performed in this 

paper to determine their optimal values. 
 

In this work, the changed status of the pixels in HSRS 

images is either “changed” or “unchanged”. Detection 

performance is evaluated using the following four 

metrics: P (Precision), R (Recall), F (F-Score) and T 

(Time Consumption). Let N1 denote the number of 

correctly detected pixels that have changed in the 

experimental zone, N2 denote the total number of 

detected pixels that have changed in the experimental 

zone, and N3 denote the number of pixels that have 

actually changed in the experimental zone. Then, the 

definitions of P, R and F are as Equations (3-1), (3-2) 

and (3-3): 
 

1/ 2 100%P N N                               (3-1) 
1/ 3 100%R N N                                 (3-2) 

2
100%

P R
F

P R

 
 

                            (3-3) 
 

F is the harmonic mean of P and R, and it can indicate 

the performance of the algorithm overall by 

combining the two metrics. F can also alleviate 

contradiction between P and R. The higher the F, the 

better the algorithm [32]. Time consumption T reflects 

the efficiency of the pixel change detection and it is 

another important performance metric in addition to 

change detection accuracy. 
 

4. Experiments and Result Analysis 
 

4.1. Experimental zone and choice of samples 
 

4.1.1. Basic data and pre-processing 
 

In order to improve reliability of the research results, 

four EO-1 Hyperion HSRS images (Level L1G) are 

chosen for the experiments, and two images of them 

cover the same regions at different phases, and their 

coverage regions are located in XinYang City, Henan 

Province; the other two images of them also cover the 

same regions at different phases, but their coverage 

regions are located in the Changping District, Beijing 

City. The EO-1 Hyperion data (L1G) has 242 wave 

bands, including 35 visible bands, 35 near-infrared 

bands, and 172 shortwave infrared bands. The spectral 

range is 0.4～2.5μm, the spectral resolution is 10 nm, 

and the spatial resolution is 30m. Two representative 

experimental zones were chosen respectively from the 

two coverage regions described above (that is, four 

experimental zones are selected). Details of each 

experimental zone are listed in Table 1. 
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Table 1: Basic information of experimental zones 
 

Names of 

experimental 

zones 

Sizes of 

experimental 

zones (pixels) 

Central position 

(rectangle) 

Imaging  

time 
Address 

Zone 1 187×268 
32°16'56.1875"N, 

114°32'52.5174"E 

2003-02-18 

2005-01-14 

Nearby Dalin Town and Dongpu 

Town in Luoshan County, Xinyang 

City, Henan Province 

Zone 2 185×271 
31°55'21.1725"N, 

114°26'58.8077"E 

2003-02-18 

2005-01-14 

Nearby Panxin Town in Luoshan 

County, Xinyang City, Henan 

Province 

Zone 3 134×306 
40°7'50.0400"N, 

116°24'42.8152"E 

2001-11-27 

2003-04-07 

Near Dongxiaokou Town, 

Changping District, Beijing 

Zone 4 142×271 
40°3'3.0125"N, 

116°23'12.8551"E 

2001-11-27 

2003-04-07 

Near Beiqijia Town, Changping 

District, Beijing 
 

In this work, four pairs of HSRS test images 

corresponding to the above four experimental zones 

are used as the test hyperspectral data in the 

experiments. In addition to the EO-1 Hyperion data of 

images, we carried out field survey and collected 

historical materials to obtain a lot of data on land-use 

of the four experimental zones above. They constitute 

the most important source of samples for HSRS 

change detection experiments. 
 

The first step of pre-processing EO-1 Hyperion 

images of experimental zones is to eliminate 

problematic wave bands. After elimination, each of 

the two groups of EO-1 Hyperion images had 152 

bands, numbered 12~57, 81~119, 133~164, 183~184 

and 188~220. Then, these EO-1 Hyperion images 

were subjected to radiation correction, bad line 

restoration, strip elimination, smile effect removal, 

atmosphere correction and geometrical registration. 
 

4.1.2. Selection of samples 
 

The types of land use in the four experimental zones 

mainly include grassland, land for construction, forest 

land, nudation, farm land and water body. The 

training and testing samples can be classified into 

changed and unchanged categories. After the 

comprehensive analysis of field investigation, 

corresponding historical data and other remote 

sensing images of the similar coverage, the changed 

and unchanged samples from each experimental zone 

are selected randomly and divided equally into two 

halves (one half of them are training samples, and the 

other half of them are testing samples). The number of 

the samples for each experimental zone is shown in 

Table 2. After extraction of relevant samples, we 

needed to normalize the feature data of training and 

testing samples in order to eliminate difference both 

features and metrics in terms of dimensionality, order 

and data dispersion. 
 

Table 2: Number of samples for each experimental 

zone 
 

Experimental 

zones 

Training 

samples 

(changed) 

Training 

samples 

(unchanged) 

Testing 

samples 

Zone 1 500 500 50116 

Zone 2 1000 1000 50135 

Zone 3 2000 2000 41004 

Zone 4 3000 3000 38482 
 

4.2. Feature extraction and combination 
 

The HSRS images have continuous and fine-

granularity wave bands and high spectral resolutions. 

Continuous and fine-granularity spectrums of ground 

objects are essential for distinguishing ground objects 

effectively. Therefore, in order to determine whether 

pixels have changed, in addition to the endmember 

abundance change vector δ= [δ1, δ2, .. δp], we need to 

comprehensively consider the continuous spectral-

difference vector Δsp = [Δsp1, Δsp2, .....Δspw] (where 

w is the number of effective wave bands in the 

hyperspectral images after eliminating problematic 

wave bands), and the included angle θ of spectral 

feature vectors. The included angle θ can be computed 

as equations (4-1): 
 

arccos( / (| | *| |))a b a b                  (4-1) 
 

Where a and b denote the spectral vectors of the pixel 

at the former and latter phases, |a| and |b| denote the 

modulo of a and b, a•b denotes the inner product of a 

and b. The integrated feature vector F= [δ1, δ2,...δp, 

Δsp1,Δsp2,.....Δspw, θ] is used as the low-layer feature 

of deep learning at DBN-SVM, with a dimensionality 

of 163 in total ( p=10 and w=152). 
 

4.3 Experiment on CDHSRS-DBN-based change 

detection 
 

Before carrying out the experiment on CDHSRS-

DBN-based change detection, a DBN-SVM network 

model which involves optimization of the DBN-SVM 

parameters needs to be constructed firstly. These 

parameters includes the number of RBM layers, the 

number of neurons in the hidden layer, the number of 

neurons in the input and output layers, and the number 

of sample iterations at the pre-training and fine-tuning 

stages. From the principles and structures of DBN-

SVM discussed in Section two, we know that the 

performance of the DBN-SVM is largely dependent 

on these parameters. In this paper, the optimal settings 
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of these parameters were determined empirically and 

through simulation[21,24].The overall change 

detection accuracy reaches the highest level when 

each of hidden layers in DBN-SVM has the same 

number of neurons, the number of RBM layers 

(exclusive of the SVM layer) is set to 4 and the 

number of neurons in the hidden layer is 64. At the 

pre-training stage, the weight of connections between 

the visible and hidden layers is adjusted constantly 

through iteration in order for the entire network to 

learn the fundamental features of the input samples 

effectively. After construction of the deep network 

with four layers of RBM, the SVM classifier is used 

to fine-tune the weights of the DBN-SVM for the 

purpose of further improving the change detection 

accuracy. Experimental results indicate that the 

overall performance of DBN-SVM converges to a 

stable level after 1500 sample iterations at the pre-

training stage and 2000 fine-tuning iterations. 

Moreover, the number of neurons in the input layers 

of the DBN-SVM (the number of neurons in the first 

RBM visible layer) is equal to the dimensionality of 

the low-layer integrated feature vector (163) in our 

experiment, while there is only one neuron in the 

output layer (SVM classifier), where the change 

detection result is either changed (1) or unchanged 

(0). 
 

In this work, land-use change is classified into two 

categories: changed or unchanged. Figures 4-7 show 

the land-use changes detected by applying the 

proposed CDHSRS-DBN to the four pairs of HSRS 

images described above. 
 

Although the four pairs of testing images have 

different levels of complexity and a few of changes 

suffer misdetection and omissions, CDHSRS-DBN 

was able to correctly detect most of the land-use 

changes. In the four pairs of testing images, the 

changes that occur to the farm land and the land for 

construction are prone to be misdetected or omitted. 

This is mainly because the types of crops grown, the 

growth status and the amount of water storage in the 

farm land vary greatly and frequently, and the 

regularity of reflectance spectrum from farm lands is 

not obvious. The land for construction differs 

enormously in terms of earth surface coverage, types 

of buildings and the materials of rooftops. Moreover, 

the reflected light from buildings provides serious 

interference, and it is challenging to unmix pixels. 

Hence, it is very difficult to detect changes in farm 

land and land for construction based on spectral 

changes of the reflected light. In addition, spectrum 

similarity exists among some forest land, farm land, 

grass land, wet land and paddy field, and this 

increases the possibility of misdetection. The 

performance metrics of CDHSRS-DBN for the four 

pairs of testing images are given in Table 3. Table 3 

indicates that the average precision and average recall 

of CDHSRS-DBN for the four pairs of testing images 

are 90.39% and 87.10%, respectively; the average 

value of F-Score is 0.8871. This demonstrates 

CDHSRS-DBN can detect land use changes of multi-

temporal HSRS images very accurately. 

 

 
 

Figure 4: Change detection results of hyperspectral images for the first experimental zone (RGB: 164/48/31) 
 

 
 

Figure5: Change detection results of hyperspectral images for the second experimental zone (RGB: 164/48/31) 
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Figure 6: Change detection results of hyperspectral images for the third experimental zone (RGB: 164/48/31) 
 

 
 

Figure7: Change detection results of hyperspectral images for the fourth experimental zone (RGB: 164/48/31) 
 

Table 3: Analysis of change detection results for each experimental zone 
 

Experimental 

zones 
N1 N2 N3 

Misdetecti

ons 
Omissions 

Precision 

(P/%) 

Recall 

(R/%) 
F-Score 

Zone 1 475 515 549 40 74 92.23 86.52 0.8929 

Zone 2 839 933 974 94 135 89.92 86.14 0.8799 

Zone 3 8909 9989 10238 1080 1329 89.19 87.02 0.8809 

Zone 4 8829 9785 9951 956 1122 90.23 88.72 0.8947 

Averages      90.39 87.10 0.8871 
 

4.4. Comparison of CDHSRS-DBN with other 

methods 
 

In order to evaluate the performance of CDHSRS-

DBN, we compared it with the post-classification  
 

change detection method (PCCD) [11-13], principal 

component analysis-based change detection method 

(CD-PCA) [2,3,4], iterative weighting-based multi-

variable change detection method (IR-MAD) [6-7], 

feature subspace-based hyperspectral image change 

detection method (CDHSRS-SCD) [22], pixel 

unmixing-based hyperspectral image change detection 

method (CDHSRS-MPD) [24-27], and the 

independent component analysis-based hyperspectral 

image change detection method (CDHSRS-ICA)[18]. 

In PCCD, the images collected at different phases are 

classified first, and the changes in ground objects are 

then determined based on classification results. Its 

detection accuracy is directly related to the 

classification accuracy of each image, and the error is 

prone to be accumulated. Hence, its change detection 

accuracy needs to be further improved. In CD-PCA, 

the difference-image undergoes PCA transformation, 

or the dual-temporal images are combined into a 

single image which is then subjected to PCA 

transformation. This method focuses on the difference 

between wave bands, and highlights the changed 

region by integrating information on the changes, but 

it is mostly suited for multi-spectral data without 

paying sufficient attention to the features of 

hyperspectral data. Thus, it is efficient but inaccurate. 

IR-MAD is developed by combining the traditional 

MAD algorithm with the expectation maximization 

(EM) algorithm. It detects changes in ground objects 

by assigning weights to pixels and altering thresholds. 

It is also very suited for multi-spectral data but 

ineffective for change detection of hyperspectral 

images. CDHSRS-SCD is very implementable and 

accurate, but its major problems lie in the inefficiency 

of detecting fine-granularity spectral changes and the 

difficulty of constructing the subspace. CDHSRS-

MPD needs to first determine the dimensionality of 

hyperspectral data and the number of endmembers, 

extract pure spectral features from ground objects 

(endmembers), and then compute the corresponding 

abundance maps. Finally, it detects changes through 
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pixel unmixing together with the difference between 

abundance maps. Change detection accuracy is 

improved greatly. In CDHSRS-ICA, pixel unmixing 

is done via ICA, and skewness-based ICA is 

performed on the endmember-difference image. The 

change in single ground object is shown separately in 

different component figures in order to extract the 

changes information. This method is very efficient 

without increasing the rate of misdetection. 
 

The proposed CDHSRS-DBN is compared with other 

six methods (CDHSRS-SCD, CDHSRS-MPD, 

CDHSRS-ICA, IR-MAD, CD-PCA and PCCD) using 

the experimental data of the four pairs of testing 

images in subsection 4.3. The experimental results are 

shown in Table 4. The algorithm performance is 

evaluated using the following four metrics: average 

prevision P_avg, average recall R_avg, average F-

Score F_avg and average time consumption T_avg. 

 

Table 4: Comparison of experimental results for different detection algorithms 
 

Change detection methods P_avg/% R_avg/% F_avg T_avg/s 

CDHSRS-DBN 90.39 87.10 0.8871 242.5 

CDHSRS-SCD 88.07 85.86 0.8694 175.2 

CDHSRS-MPD 86.60 0.8447 0.8551 165.6 

CDHSRS-ICA 86.94 0.8481 0.8585 121.8 

IR-MAD 85.86 0.8374 0.8478 179.5 

CD-PCA 82.25 0.8022 0.8121 119.3 

PCCD 80.82 0.7888 0.7983 133.9 
 

Table 4 indicates that CDHSRS-DBN consumes more 

time than other methods, but it is superior in terms of 

average precision, average recall and average F-Score, 

which are 90.39%, 87.10% and 0.8871, respectively. 

The change detection accuracy of CDHSRS-SCD is 

only next to CDHSRS-DBN, but its time consumption 

is much less than CDHSRS-DBN. The change 

detection accuracy of CDHSRS-MPD is close to that 

of CDHSRS-ICA, and both of them are inferior to 

CDHSRS-SCD in terms of accuracy. But their time 

consumption is also less than CDHSRS-SCD. Hence, 

CDHSRS-SCD, CDHSRS-MPD and CDHSRS-ICA 

put in remarkable performance on hyperspectral 

change detection. But compared with CDHSRS-DBN, 

they cannot represent complicated functions 

effectively when there is a limited number of samples 

and computing units. Moreover, their generalization 

ability is poor in the face of change detection of 

hyperspectral images. This is why they cannot detect 

changes of hyperspectral images accurately. The 

accuracy of IR-MAD is slightly less than CDHSRS-

ICA, but its time consumption is ranked second, only 

next to CDHSRS-DBN. This is mainly because IR-

MAD assigns different weights to pixels through 

constant sample iteration, and determines whether 

changes occur to pixels based on final weights of 

pixels and the weighting threshold. But in the case of 

change detection of high-dimensional data, the 

number of sample iterations needed for pixel weights 

to converge increases dramatically, and the threshold 

is mostly set up manually, greatly affecting accuracy 

and efficiency of change detection. CD-PCA and 

PCCD can detect changes efficiently, but the accuracy 

is lower. The change detection accuracy of PCCD is 

lowest of all the methods above. Mixed pixels have 

great influence on HSRS images, the classification 

accuracy of single-temporal image is limited, and the 

errors tend to be accumulated during multi-temporal 

change detection. In this context, the accuracy of 

PCCD is very low because it is directly related to the 

classification accuracy of single-temporal image. In 

CD-PCA, subjecting the hyperspectral difference 

image or the combined image to PCA transformation 

causes heavy loss of feature information. The 

alleviation of high-dimensional features reduces the 

change detection accuracy of hyperspectral images. 

To sum up, the proposed CDHSRS-DBN is superior 

to the other methods overall. 
 

5. Analysis and Discussion 
 

The proposed CDHSRS-DBN focuses on checking 

whether a certain pixel has changed, instead of 

addressing the “from-to” problem for a particular 

type of ground object. Although the CDHSRS-DBN 

proposed in this paper can detect changes in HSRS 

images effectively, there are still some issues. 
 

In this work, ICA is used for linear pixel unmixing. 

When the hyperspectral images follow or almost 

follow a linear model, endmembers can be extracted 

from mixed pixels and generate abundance maps very 

accurately, efficiently and automatically. But when 

the hyperspectral images follow a non-linear model, 

the endmember spectrums cannot be extracted 

accurately. Hence, the ICA-based pixel unmixing 

needs to be improved and adapted to nonlinear 

hyperspectral images. 
 

In addition, the low-layer features of multi-temporal 

HSRS images contain spectral features, spatial 

features, temporal features and spatio-temporal 

autocorrelation features, and so on. But in this work, a 

integrated feature vector F=[δ, Δsp, θ] is defined as 

the low-layer feature vector of DBN-SVM deep 

learning, where δ denotes the endmember abundance 

change vector, Δsp denotes the continuous spectral 

difference vector, and θ denotes the included angle of 

the spectral feature vector. Obviously, F is a spectral 

feature vector and the other features of hyperspectral 

images are not fully exploited. Furthermore, when the 

low-layer features of hyperspectral images are 
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described in this work, the various feature vectors are 

only combined simply without considering the 

mutually constraining relationship among feature 

vectors in the temporal-spatial-spectral features space. 

This may cause the loss of low-layer features. How to 

optimize the combination of low-layer features for 

DBN-SVM is an issue that needs to be studied in the 

future. 
 

6. Conclusions 
 

In this work, the proposed CDHSRS-DBN fully 

absorbs the advantages of DBN, pixel unmixing and 

SVM, and greatly improves change detection 

accuracy. CDHSRS-DBN was compared with six 

other typical algorithms (CDHSRS-SCD, CDHSRS-

MPD, CDHSRS-ICA, IR-MAD, CD-PCA and PCCD) 

and the results demonstrate its superiority as its 

average recall, average precision, average F-Score and 

average time consumption are 90.39 %, 87.10 %, 

0.8871 and 242.5 seconds, respectively. However, 

there are still some defects with our work. For 

example, the pixel unmixing method needs to be 

further improved, and the utilization and combination 

of low-layer features need to be further optimized. 

When the multi-temporal HSRS images are of poor 

quality or follow nonlinear model, the accuracy and 

efficiency of CDHSRS-DBN will be affected. In the 

future, we will comprehensively consider these issues 

and strive to propose a new method that can detect 

changes of HSRS images even more accurately, 

efficiently and automatically. 
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