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Abstract: High-resolution remote sensing (HRRS) images of urban regions have large viewing angle variations, 

significant noise jamming, and obvious building shadows. Hence, deviation and distortion usually occur to the 

buildings in HRRS images collected at different phases (multi-temporal HRRS images). The traditional 

detection methodology is ineffective for accurate and efficient building changes detection in multi-temporal 

HRRS images. In order to address these problems, this paper proposes a sub-graph matching-based building 

changes detection (SGMBCD) scheme. First, this paper presents a Graphcut-based buildings extracting (GCBE) 

method from multi-temporal HRRS images. Next, a sub-graph matching-based registration (SGMR) method is 

devised to register the previously extracted buildings from multi-temporal HRRS images and to obtain matched 

ASIFT feature point pairs and singular points. Finally, singular points and overlay analysis-based method 

(SPOA) is developed to detect building changes in multi-temporal HRRS images. The types of building changes 

included in this paper are changes (e.g., erection, dismantling, repairing, and reconstruction) and non-changes. 

In order to demonstrate the effectiveness of the proposed SGMBCD scheme, it is compared with five typical 

algorithms (i.e., BCDBPM, SDBBCD, BCDBICO, NCUTBCD, and RSMBCD) on three sets of multi-temporal 

WorldView2 test images. Experimental results show that in comparison with the other methods, SGMBCD can 

effectively address the challenging problem of building changes detection in multi-temporal HRRS images. The 

average recall ratio, precision ratio and F value is 91.47%, 86.49% and 88.91% respectively, and the average 

time consumption is 60.3 s. This demonstrates SGMBCD can detect building changes in multi-temporal HRRS 

images accurately and efficiently. 
 

Keywords: High-Resolution Remote Sensing Images, Sub-graph Matching, Building Changes Detection, 

Overlay Analysis. 
 

 

1. Introduction 
 

Building changes detection via remote sensing images 

refers to the technique of detecting building changes 

on the ground using multi-temporal remote sensing 

data. Building changes include reconstruction and 

extension due to land use and coverage variation, as 

well as collapse and damage due to natural disasters
 

[1]. Building changes detection is of great 

significance in urban planning, GIS data upgrading, 

smart cities, and military surveillance
 
[2,3]. Currently, 

the data source that underlies building changes 

detection is primarily high-resolution remote sensing 

(HRRS) images. Although HRRS images provide the 

benefit of building recognition, the images are subject 

to large angle variations, significant noise jamming, 

and apparent building shadows. Deviations and 

distortions usually occur to the same building in 

multi-temporal HRRS images, which makes it more 

difficult to detect building changes in HRRS images 

than those of other objects on the ground, such as 

water bodies, vegetation, and roads. Other factors that 

added to the difficulty of building changes detection 

include: lack of directly relevant 3D data, possibility 

of the same object exhibiting different spectrums, 

diversity in building appearance, and complexity of 

the scene surrounding buildings in urban areas[1-

4].As a result, traditional methods cannot accurately 

and efficiently detect building changes in multi-

temporal HRRS images. Fruitful studies have been 

done worldwide on this issue. Typical algorithms 

include the probabilistic model method
 
[5], shadow 

analysis method
 

[6], inter-class overlay analysis 

method
 

[7], graph segmentation method
 

[8], and 

image matching method [9]. These algorithms have 

shortcomings in terms of self-adaption, accuracy and 

efficiency, especially for HRRS mages with complex 

backgrounds. In order to address these problems, this 

paper proposes a sub-graph matching-based building 
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changes detection (SGMBCD) method, which 

provides improved accuracy and efficiency. 
 

2. Sub-Graph Matching-Based Registration 

(SGMR) Method for HRRS Images 
 

Due to large variations in angle and scale among 

multi-temporal HRRS images, it has been proven that 

matching images via scale-invariant feature transform 

(SIFT) features results in few feature points and 

inaccuracy
 
[10-13].

 
Substituting affine-SIFT (ASIFT) 

features for SIFT features can increase the number of 

feature points, but it is inefficient and prone to 

generate an uneven distribution of feature points. 

ASIFT is more suitable for matching images with 

large viewpoint variations. The advents of H-SIFT 

[11],
 
PIF [12] and AIF [13] in recent years have 

provided effective approaches for accurate and 

efficient matching of inclined aerial images. But, it is 

difficult to estimate exterior orientations and 

determine accurate camera angles for satellite remote 

sensing images, and the estimation accuracy has a 

large influence on matching results. Hence, these 

algorithms are not suitable for matching multi-

temporal HRRS images. In this context, this paper 

proposes a sub-graph matching-based registration 

(SGMR) method for multi-temporal HRRS images. 

The steps are illustrated in Figure1. 
 

 
 

Figure 1: Process of sub-graph matching-based 

registration of HRRS images 
 

Figure1 shows that, in SGMR, firstly, the multi-

temporal HRRS images are pre-processed and 

bilateral-filtered , and then they are transformed by 

simulating all possible affine deformations; Secondly, 

extract ASIFT feature points from the multi-temporal 

HRRS images after processed above, and perform 

Coarse matching on ASIFT feature points using the 

Nearest Neighbor Distance Ratio method(NNDR) [14] 

and the Random Sample Consensus method (Ransac) 

[15] in order to obtain coarsely matched ASIFT 

feature point pairs; Thirdly, a Neighborhood-based 

Feature Sub-graph Matching (NFSM) method is 

proposed to perform fine matching on the coarsely 

matched ASIFT feature point pairs. In this manner, we 

obtain the final ASIFT matched point pairs and 

singular points of the multi-temporal HRRS images. 

Finally, we compute the affine transform matrix using 

the least squares method with the set of final matched 

point pairs. The to-be-registered HRRS images are 

reconstructed using bilinear interpolation to achieve 

the final registration of multi-temporal HRRS images. 
 

NFSM regards feature points in coarsely matched 

point pairs as a node in the graph. For each coarsely 

matched point pair and the corresponding nodes in the 

graph, NFSM determines correspondence accuracy by 

checking the similarity between topological 

relationships of the nodes with other nodes in their 

respective graphs. Consider two sets of coarsely 

matched point pairs that consist of the same number 

of matched points from the reference image and the 

to-be-matched image, respectively. We construct two 

graphs, Graphs X and Y, based on the neighborhood 

relationships of feature vectors corresponding to 

feature points in the two sets. As shown in Figure 2, i 

= 1..n and j = 1..n, where n denotes the number of 

coarsely matched point pairs. Let matrices DX(i,j) and 

DY(i,j) denote the length of directed edges from node i 

to node j in X and Y. Their values are the Mahalanobis 

distance between the feature vectors of ASIFT feature 

points i and j. Let matrices βX(i,j) and βY(i,j) denote 

the counterclockwise direction angle of directed edges 

from node i to node j in X and Y. Their values are the 

difference between the principal direction angles for 

the two ASIFT feature points i and j. Given the 

symmetry of the four matrices, it is sufficient to 

compute half the elements, i.e., DX(j,i) = DX(i,j), 

DY(j,i) = DY(i,j), βX(j,i) = 180 + βX(i,j), and βY(j,i) = 

180 + βY(i,j). 
 

 
 

Figure 2: NFSM-based fine matching of ASIFT 

feature points 
 

The neighborhood features for each node in X and Y 

can be effectively described using the length vectors 

(Mahalanobis distance) and direction angle vectors of 

all edges that start with the node. This description 

strategy is evidently too strict. Despite it can greatly 

improve the matching accuracy of feature point pairs, 

the number of obtained matched point pairs is 

substantially reduced, which results in a non-uniform 

distribution of matched point pairs. Consequently, the 

to-be-matched images suffer significant distortions or 

deformations in the case of the affine transform. 

Furthermore, a large value of n means that the 

matching process is inefficient and computationally 

intensive. In order to further improve matching 
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efficiency without compromising matching accuracy, 

this paper constructs a feature sub-graph, SX or SY, by 

using the top m (m<n, i = 1..n) closest nodes (with the 

shortest Mahalanobis distance from node i) in X (or Y) 

and the m directional edges that start with i. The 

neighborhood of each node in X and Y can be 

effectively described using the length vectors and 

direction angle vectors of each directional edge in SX 

and SY. For any two nodes in X and Y, if their 

respective sub-graphs SX and SY are matched, then 

the two nodes are also matched, and vice versa. The 

steps for selecting feature sub-graph SX from X are 

given in Figure 3, which is also true for the steps 

required to generate SY. The value of m has a large 

influence on fine matching accuracy and efficiency of 

ASFIT feature points. The optimal value of m is 

determined through experimentation. 
 

 
 

Figure 3: Process of selecting SX from X 
 

Let matrices DSX(i,j) and DSY(i,j) denote the length of 

directed edges from node i to node j in SX and SY, 

where i = 1..m and j = 1..m. Their values are the 

Mahalanobis distance between feature vectors of 

ASIFT feature points i and j. Let matrices βSX(i,j) and 

βSY(i,j) denote the counterclockwise direction angles 

of directed edges from node i to node j in SX and SY. 

Their values are the difference between the principal 

direction angles for the two ASIFT feature points i 

and j. The following procedure shows how to register 

X and Y using sub-graphs. 
 

First, we compute the two descriptive feature vectors 

of node i in X, i.e., the length vectors and direction 

angle vectors of m directional edges in sub-graph SX, 

DSX(i) and βSX(i). Next, we sort the elements in DSX(i) 

and βSX(i) in ascending order to obtain the feature 

vectors that describe node i, D'SX(i) and β'SX(i). 

Similarly, we can compute feature vectors D'SY(i) and 

β'SY(i) that describe node i in Y. In order to determine 

whether the i
th 

coarsely matched nodes in X and Y are 

matched, we compute the difference between the 

distance feature vectors △D(i) and the difference 

between the direction feature vectors △β(i). △D(i) and 

△β(i) can be computed as shown in Equations (2-1) 

and (2-2), where Dot() refers to the dot product of 

vectors. 
 

△D(i)=Dot(D'SX(i),D'SY(i))                            (2-1) 

△β(i) = Dot(β' SX(i), β'SY(i))                          (2-2) 
 

In special cases, if the i
th

 nodes in X and Y and all 

other nodes agree on the directional difference of 

feature vectors, i.e., Sum(β' SX(i)) == 0 and Sum(β' 

SY(i)) == 0, where Sum() is the 1D matrix summation 

function, then the i
th

 feature points in X and Y are 

matched. Ordinarily, false matches that remain in 

coarsely matched point pairs can be eliminated by 

thresholds. That is, if △D(i) > TD and △β(i) > Tβ (TD 

and Tβ are thresholds), then the i
th

 feature points in X 

and Y are matched. 
 

3. Graphcut-Based Buildings Extraction (GCBE) 

from HRRS Images 
 

A Graphcut-based buildings extraction method from 

HRRS images is proposed in this section. First, we 

regard each HRRS image pixel as a node in the 

undirected graph G, and segment HRRS images using 

Graphcut (max flow/min cut algorithm) to generate a 

set of objects. Next, we filter the objects by 

comparing three metrics (e.g., rectangle degree, aspect 

ratio, and area) to extract buildings effectively. The 

process of GCBE is given in Figure 4. 
 

 
 

Figure 4: Process of Graphcut-based buildings 

extraction from HRRS images 
 

First, in order to eliminate calibration error, 

registration error, and much noise from initial HRRS 

images, this paper pre-processes initial HRRS images 

through geometrical and radiation corrections. Next, a 

bilateral filter[16] that is capable of removing noise 

while maintaining edges is used to eliminate noise 

(e.g., burs and small holes) from initial HRRS images 

and to enhance edges of artificial objects on the 

ground in urban areas. Afterwards, the RGB color 

space of HRRS images is converted to LAB color 

space, which has a wider gamut and more colors. The 

LAB color model consists of a lightness component, 

IL, and two color components (IA and IB). A 

convolution Gaussian filter based on the Sobel 

operator is used to extract edges from LAB images 

and to obtain features (e.g., edges and locations) of 

LAB images. Building roofs in HRRS images have 

the characteristics high brightness, special colors, 

regular shapes and clear edges. Therefore, this paper 

constructs a feature vector T = [IL, IA, IB, DS, GI], 

where IL denotes the brightness component in LAB, IA 

and IB denote the two color components in LAB, DS 

denotes the Euclidean distance between neighboring 
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pixels, and GI denotes the edge intensity. At first, this 

feature vector is used to extract feature samples. 

Later, based on the set of extracted feature samples, 

we compute a regional energy term R(F) and a 

boundary energy term B(F) in the overall 

segmentation cost function of image F, E(F). The two 

terms are combined in a weighted manner to obtain 

E(F). Finally, HRRS images are segmented using 

Graphcut (maximum flow/minimum cut algorithm) to 

generate the set of objects, and segmented objects are 

filtered based on the three metrics (rectangle degree, 

aspect ratio, and area), in order to effectively extract 

the buildings. 
 

For the Graphcut-based HRRS image segmentation in 

this paper, the overall segmentation cost function, 

E(F), is defined as the equation (3-1): 
 

( ) ( ) ( )E F R F B F                         (3-1) 
 

Where R(F) and B(F) denote the regional energy term 

and boundary energy term, and the weighting 

parameter λ denotes the relative importance of the 

regional energy term and boundary energy term. A 

large λ means that the regional term accounts for a 

large proportion in the overall cost (energy) and a 

small λ means that the boundary term accounts for a 

large proportion in the overall cost (energy). R(F) and 

B(F) are computed as follows. 
 

3.1 Calculation of regional energy term R(F) 
 

Unsupervised learning is perform on the extracted 

feature samples using the effective clustering 

algorithm fuzzy C-means (FCM) in order to 

automatically obtain the seed pixels of the foreground 

and background. By computing the Euclidean 

distance between other non-label pixels and the two 

seed pixels (which can be divided into two types: 

foreground is building and background is other 

objects on the ground), we can compute the regional 

energy term of the overall cost function, R(F), is 

defined as the equation (3-2): 
 

( ) ( )i i

i V

R F R F


                         (3-2) 

 

Let Ri(obj) and Ri(bkg) be the possibility that a non-

label pixel belongs to the foreground and background, 

respectively. Then, Ri(Fi) can be computed as follows: 
 

If Fi belongs to the foreground, then Ri(obj) = 0 and 

Ri(bkg) = ∞; 
 

If Fi belongs to the background, then Ri(obj) = ∞ and 

Ri(bkg) = 0; 
 

If Fi does not belong to the foreground or background, 

then Ri(obj) and Ri(bkg) are computed as equation (3-

3) and equation (3-4): 
 

Ri(obj) = Dobj/(Dobj + Dbkg)                     (3-3) 

Ri(bkg) = Dbkg/(Dobj + Dbkg)                     (3-4) 
 

Where Dobj and Dbkg denote the Euclidean distance 

between the center vi of Fi and the clustering centers of 

the foreground and background, vobj and vbkg. That is, 

Dobj =|vi-vobj| and Dbkg=|vi-vbkg|. 
 

3.2 Calculation of boundary energy term B(F) 
 

The boundary energy term B(F) is computed as 

equation (3-5): 
 

( , )

( ) ( , ) | |i j

i j E

B F B i j F F


                     (3-5) 

 

This equation implies that B(F) mainly depends on the 

weight of the edge connecting pixels i and j, B(i,j). In 

this paper, B(i,j) is computed as the weighted 

combination of the brightness weight Bl(i,j), color 

weight Bab(i,j), pixel-spacing weight Bd(i,j), and edge 

intensity weight Be(i,j). Thus, we let B(i,j) be 

computed as equation (3-6): 
 

3( , ) ( , ) ( , ) ( , ) ( , ) ( , )l ab d e dB i j B i j B i j B i j B i j B i j      (3-6) 

 

Based on Equations (3-5) and (3-6), the boundary 

energy term B(F) can be computed as equation (3-7): 
 

3

( , )

( , ) ( , ) (( ) | | ( ), ) ( , ) ( , )l ab dj

i E

di e

j

B i j B i j B i j B i j B i jB F F F  


     (3-7) 

 

Where α and β denote the weighted coefficients of 

edge intensity and pixel spacing. The brightness 

weight Bl(i,j), color weight Bab(i,j), pixel-spacing 

weight Bd(i,j), and edge intensity weight Be(i,j) are 

defined as follows: 
 

(1) Brightness weight, Bl(i,j): 
 

Brightness weight is defined as equation (3-8): 
 

2

2
( , )

( )
exp( )

i j

l

B i j
l

L L




                       (3-8) 

 

Where Li and Lj denote the LAB brightness 

components of pixels i and j, respectively, and σl 

denotes the variance of the global brightness. If the 

brightness values of the two pixels are close to one 

another and Bl is large, then there is a high probability 

that the two pixels belong to the same type. 
 

(2) Color weight, Bab(i,j): 
 

Color weight is defined as equation (3-9): 
 

2 2

2
( , )

(( ) ( ) )
exp( )

i j i j

ab

B i j
ab

FA FA FB FB



  
     (3-9) 

 

where FAi and FAj denote components A of pixels i 

and j in the LAB color space, respectively; FBi and 

FBj denote components B of pixels i and j in the LAB 

color space, respectively; and σab denotes the average 

global variance of components A and B in the LAB 

color space. If the color space of the two pixels are 

close to one another and Bab is large, then there is a 

high probability that the two pixels belong to the same 

type. 
 

(3) Pixel-spacing weight, Bd(i,j): 
 

Pixel-spacing weight is defined as equation (3-10): 
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2

2
( , ) exp( )

i j

d
d

B i j
C C




                (3-10) 

 

Where Ci and Cj denote the locations of pixels i and j, 

and σd denotes the variance of the global distance 

between pixels. If the distance between the two pixels 

is short and Bd is large, then there is a high probability 

that the two pixels belong to the same type. 
 

(4) Edge intensity weight, Be(i,j) 
 

Edge intensity weight is defined as equation (3-11): 
 

2

( , ) 2
( , )

( )
exp( max ( ))x line i j

e
e

B i j
SBL x


        (3-11) 

 

Where line(i, j) denotes the line connecting pixels i 

and j, SBL(x) denotes the edge intensity of pixel x in 

line(i, j) which intersects with the edge, and σe denotes 

the variance of the global edge intensity. If the line 

connecting pixels i and j does not intersect with the 

edge, then a large value of Be(i,j) means there is a 

high probability that the two pixels belong to the same 

type. 
 

4. Sub-Graph Matching-Based Building changes 

detection (SGMBCD) Method 
 

Due to the variation of camera angles in multi-

temporal HRRS images, rotations, deviations and 

distortions may occur to the same buildings, which 

adds to the difficulty of building changes detection. 

This paper proposes a sub-graph matching-based 

building changes detection method using the process 

given in Figure 5. 
 

 
 

Figure 5: Process of sub-graph matching-based 

building changes detection 
 

The above figure shows that GCBE is used first to 

extract buildings from multi-temporal HRRS images 

and to obtain the set of building objects. Next, SGMR 

is used to register the set of building objects and to 

generate ASIFT matched point pairs and singular 

points. Finally, overlay analysis is performed on the 

matched buildings, ASIFT matched point pairs and 

singular points in order to obtain matched regions and 

singular regions. SGMBCD only registers sets of 

buildings in multi-temporal HRRS images, which 

results in improved matching efficiency and lower 

interference from other objects on the ground. In this 

paper, the types of building changes include changes 

(e.g., erection, dismantling, repair, and reconstruction) 

and non-changes. Singular regions of buildings 

belong to changed areas, and these changes happen 

due to erection or dismantling of buildings. Matched 

regions of buildings are likely to be repaired, 

reconstructed, or unchanged regions. This paper 

determines if the union of two matched regions is 

changed or not by checking whether 

EG E G     is less than the threshold TEG, 

where 
2 1G G G    is the absolute value of the 

average gradient difference of building objects in 

matched regions, 1G  and 2G  denote the average 

gradient of matched building objects in two phases, 

2 1E E E    is the absolute value of the entropy 

difference, and 
1E  and 

2E  denote the entropy of 

matched building objects at different phases. If △EG 

≧ TEG, the union of two matched regions is a changed 

region; otherwise, the union is an unchanged region. 

For matched building objects in this paper, the 

average gradient G  and entropy E  are defined as 

equation (4-1) and equation (4-2): 
 

2 2

1 1

1
( , ) ( , )

m n

i j

G xf i j yf i j
m n  

  

      (4-1) 

1

( ) ln ( )
N

i i

i

E P c P c


                           (4-2) 

 

Where △xf (i, j) and △yf (i, j) denote the first-order 

difference of pixel (i, j) along the x and y directions, 

m and n denote the number of rows and columns of 

relevant images, N is the number of pixel gray levels 

in relevant images, and P(ci) is the probability of the 

i
th 

level pixel gray value in relevant images. 
 

This paper evaluates the performance of building 

changes detection method in terms of precision (P), 

recall (R), F-score (F) and time consumption (T). Let 

N1 denote the number of changed buildings correctly 

detected in the experimental zone, N2 denote the total 

number of changed buildings detected in the 

experimental zone, and N3 denote the actual number 

of changed buildings existing in the experimental 

zone. Then, P, R, and F are defined as equation (4-3), 

equation (4-4) and equation (4-5): 
 

1/ 2 100%P N N                  (4-3) 

1/ 3 100%R N N                 (4-4) 

2
100%

P R
F

P R

 
 


                  (4-5) 

 

F is computed as the harmonic mean of P and R, so it 

combines two metrics to represent overall algorithm 

performance. F can alleviate the possible conflict 

between P and R. The higher the value of F, the better 

the algorithm [17].
 
In addition to detection accuracy, 

T is an important metric that describes the efficiency 

of building changes detection. 
 

5. Experimental Results and Analysis 
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Experimental data in this paper comes from RGB 

color images (WorldView2) of Shenzhen collected at 

a resolution of 0.5 m in two phases (November 2012 

as phase 1 and August 2013 as phase 2). Due to large 

camera angle variations, objects in the two images on 

the ground (especially the buildings) have significant 

deviation and distortion. In order to perform detection 

of building changes, three sets of representative sub-

images (i.e.,A1-B1, A2-B2 and A3-B3) of the 

experimental zone (totaling 6 subimages) are selected 

from the images at phases 1 and 2. Their sizes are 

1796×1721, 1870×1646, and 1796×1646, 

respectively, as shown in Figure 6. 
 

 
 

 
 

 
 

Figure 6: Set of test images 
 

Figure 6 shows that A1-B1 consists mainly of 

buildings, nudation, and vegetation. The building 

shapes are regular (approximately rectangular) and the 

spacing between buildings is small. But some 

buildings are aligned in a row, their shapes are 

irregular, and the rooftop color and brightness are 

distinct. Furthermore, shadows and side walls of 

buildings, cement ground and nudation are important 

sources of noise interference. In addition to the 

features in A1-B1, A2-B2 has large water bodies, 

building sizes are more distinct, roads are more 

complex, and nudation is larger, making it more 

difficult to detect building changes. Unlike A1-B1 and 

A2-B2, A3-B3 consists mainly of buildings, nudation, 

vegetation and few water bodies. Building heights in 

A3-B3 are low, shadows and side walls of buildings 

are not obvious, buildings are densely distributed with 

similar dimensions, but color and brightness at the top 

of buildings are distinct. The influence of roads and 

nudation in A3-B3 on detection is not negligible. 

Detection of building changes in A3-B3 is 

challenging. Due to the difference in camera angle, 

interference from shadows in A1 and A2 is obvious, 

and some buildings are mixed with shadows. But 

images B1 and B2 contain much information on the 

side walls of buildings. These factors add to detection 

difficulty. 
 

5.1 Parameter analysis and settings 
 

Based on the above discussions, the proposed 

SGMBCD has four thresholding parameters, i.e., a 

threshold for the number of neighbors in NSFM, Tm, 

a threshold for the difference △D(i) between the 

distance feature vectors, TD, a threshold for the 

difference △β(i) between the direction feature 

vectors, Tβ, and a threshold for changes of union 

matched regions of buildings, TEG. The settings for 

TD, Tβ, and TEG influence mainly on the accuracy of 

SGMR. Hence, the optimal values of these three 

parameters can be determined through OTSU 

(Maximization of interclass variance) algorithm; the 

optimal values obtained using OTSU are TD＝0.3, 

Tβ＝0.4 and TEG=5.5. The setting of Tm influences the 

matching accuracy of SGMR, and also has a large 

impact on the matching efficiency of SGMR. Thus, 

the value of Tm should be determined experimentally. 

In what follows, experiments are performed using 

SGMR on images A1-B1, A2-B2 and A3-B3. Figure7 

shows the curves that describe the influence of Tm on 

the average number of matched point pairs (ANMPP), 

average matched accuracy (AMA), and average 

matched time (AMT). Figure 7 indicates that, with an 

increase in Tm, ANMPP gradually decreases and AMT 

gradually increases. But, AMA first increases, peaks 

at Tm = 6, and then begins to slowly fall. This is 

because when the number of neighboring nodes Tm 

increases, the requirements for matching ASIFT 

feature points are stricter, and more feature points are 

regarded as substandard and eliminated. 
 

 
 

(a) Influence of Tm on ANMPP 
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(b) Influence of Tm on AMA 
 

 
 

(c) Influence of Tm on AMT 
 

Figure 7: Influence of Tm on SGMR performance 
 

Thus, the absolute number of matched point pairs falls 

on average, but the accuracy of matched point pairs 

increases substantially. Furthermore, in the case of Tm 

= 6, SGMR achieves the highest matching accuracy, 

the average number of matched point pairs is large, 

and the average matching time is short. Hence, the 

optimal value of Tm is 6 in this paper. 
 

5.2 Analysis of results from sub-graph matching-

based building changes detection 
 

Building changes in this paper include changes (e.g., 

erection, dismantling, repair, and reconstruction) and 

non-changes. SGMBCD is used to detect building 

changes in three sets of multi-temporal images: A1-

B1, A2-B2, and A3-B3. Detection results are shown in 

Figures 8-10. These figures indicate that, although the 

three multi-temporal test images are complex to a 

varying degree and there are some misdetections and 

omissions, most building changes are detected 

accurately by SGMBCD. The misdetected objects on 

the ground in the three sets of images are small in size 

and similar to the buildings in terms of shape, 

brightness, and color. In addition, in the HRRS 

images collected at different phases with varying 

camera angles, the locations or shapes of the 

misdetected objects (e.g., large vehicles, sides of 

buildings, nudation with regular shapes, and small 

temporary buildings) are prone to change, making it 

possible to mistake them as building changes. 

Moreover, the same buildings in multi-temporal 

HRRS images are significantly and differently 

interfered by surrounding objects on the ground, and 

this may also cause misdetection of building changes. 

For omitted buildings, some fail to be detected due to 

the buildings themselves, but the major reason is that 

the rooftop changes slightly after reconstruction, and 

that there are similar surface objects near the newly 

erected or dismantled buildings. 

 

 
 

Figure 8: Analysis of building changes detection results (A1-B1) 
 

 
 

Figure 9: Analysis of building changes detection results (A2-B2) 
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Figure 10: Analysis of building changes detection results (A3-B3) 
 

These factors add difficulty to the detection of 

building changes. When SGMBCD is used to detect 

building changes in A1-B1, A2-B2, and A3-B3, the 

obtained performance parameters are given in Table 

1. 

 

Table 1: Analysis of experimental results using SGMBCD 
 

Test 

images 
N1 N2 N3 Omissions Misdetections 

Recall  

R (%) 

Precision 

P (%) 
F (%) 

Time 

T(s) 

A1-B1 75 85 80 10 5 93.75 88.24 90.91 69.5 

A2-B2 38 45 42 7 4 90.48 84.44 87.36 51.2 

A3-B3 46 53 51 7 5 90.20 86.79 88.46 60.2 

Average 53 61 58 8 5 91.47 86.49 88.91 60.3 
 

Table 1 shows that, when building changes detection 

in A1-B1, A2-B2 and A3-B3 using SGMBCD, the 

average recall and precision ratios are 91.47% and 

86.49%, the average value of F is 88.91%, and the 

average time consumption is 60.3 s. This 

demonstrates the ability of SGMBCD to detect 

building changes in multi-temporal HRRS images 

accurately and efficiently. Recall and precision ratios 

for A1-B1 are higher than the other two image sets. 

This is mainly due to more interference around the 

buildings in A2-B2 and A3-B3. Compared with A1-B1, 

A2-B2 consists of more distinct building dimensions, 

more complicated roads and larger nudation. In A3-

B3, although buildings are relatively low and shadow 

interference is unobvious, the buildings are densely 

concentrated, the color and brightness at the top of 

buildings change greatly, and roads and nudation have 

a large influence on detection. Hence, it is challenging 

to detect building changes in A2-B2 and A3-B3. 

5.3 Comparative analysis of experimental results 
 

In order to evaluate the performance of the proposed 

SGMBCD, the method is compared with the 

following typical algorithms of the same type: 

probabilistic model-based method (BCDBPM) by 

W.Liu,et al. in literature[5], shadow detection-based 

method (SDBBCD) by S.P.Ji and X.X.Yuan in 

literature[6],
 

inter-class overlay analysis-based 

method (BCDBICO) by Z.S.Wang in literature[7],
 

graph segmentation-based method (NCUTBCD) by 

W.Z.Shi and Z.Y. Mao in literature[8],and image 

matching-based method (RSMBCD)  by X.L.Song 

and W.M.Li in literature[9]. The comparison is made 

on the three sets of test images A1-B1, A2-B2 and A3-

B3. Results are given in Table 2. Overall performance 

of the algorithms is evaluated in terms of average 

precision ratio (P), average recall ratio (R), average 

value of F, and average time consumption (T). 

 

Table 2: Results of experimental comparison 
 

Detection 

algorithms 

Average recall 

ratio R (%) 

Average precision 

ratio P (%) 

Average value of 

F (%) 

Average time 

consumption T(s) 

SGMBCD 91.47 86.49 88.91 60.3 

BCDBPM 85.65 83.32 84.47 53.5 

SDBBCD 86.25 82.35 84.25 45.21 

BCDBICO 85.75 83.65 84.69 55.45 

NCUTBCD 89.85 84.68 87.19 57.6 

RSMBCD 87.93 83.61 85.72 59.3 
 

Table 2 shows that, although SGMBCD is slightly 

more time consuming than the other methods, it is 

superior in terms of average recall, average precision 

and average value of F. The accuracy of BCDBPM, 

SDBBCD, BCDBICO and RSMBCD is less than 

SGMBCD. In the case of large parallax and distortion, 

BCDBPM causes significant errors when extracting 

building contours using the probabilistic model. The 

accuracy of SDBBCD is limited when used for 

buildings with large shadows or that have overlap 
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with shadows. BCDBICO detects building changes by 

performing inter-class overlay analysis, but the 

strategy for extracting buildings is inaccurate and 

prone to error accumulation. Hence, the accuracy of 

BCDBICO is limited for building changes detection. 

Like the proposed SGMBCD, RSMBCD relies on 

matching algorithms to register multi-temporal HRRS 

images and then detect building changes. But for 

multi-temporal HRRS images that have large camera 

angle differences, building deviations and distortions, 

the HRRS image matching method that relies on 

Maximally Stable External Regions (MSER) affine-

invariance is inferior to SGMR of SGMBCD (i.e., 

matching images based on ASIFT feature points) in 

terms of accuracy. Furthermore, the MSRE region is 

not definitely within buildings, and RSMBCD is less 

accurate than SGMBCD. But, RSMBCD does not 

need to extract buildings, and there are fewer MSRE 

regions than ASIFT feature points for image 

matching. Hence, RSMBCD is usually more efficient 

than the proposed SGMBCD. The accuracy of 

NCUTBCD is high and next to SGMBCD. This is 

mainly because building objects extracted from multi-

temporal HRRS images are not matched effectively. 

Significant error exists during overlay analysis of 

multi-temporal buildings whose locations and 

contours change greatly, which results in limited 

accuracy of building changes detection. But, 

compared with SGMBCD, NCUTBCD does not need 

to perform automatic matching on building objects, 

and thus is less time-consuming. Hence, the proposed 

SGMBCD outperforms BCDBPM, SDBBCD, 

BCDBICO, NCUTBCD, and RSMBCD overall. 
 

6. Analysis and Discussion 
 

Due to various uncertainties (e.g., camera angle, 

sensor type, weather, illumination and uncertainty of 

remote sensing data), buildings are prone to be 

distorted, inclined and deviated across multi-temporal 

HRRS images. Due to the interferences from building 

shadows, side walls, roads, and nudation, building 

changes detection in HRRS images is complicated 

and is not yet to be addressed completely. Compared 

with other methods of the same type, the proposed 

SGMBCD is more accurate and efficient. But, it also 

has limitations. First, SGMBCD has four major 

parameters (thresholds) and these parameters exhibit 

obvious patterns in influencing detection 

performance. But this paper determines the optimal 

values of these parameters manually in the 

experiment, and has not yet to completely automate 

the optimization; Second, SGMBCD is inaccurate for 

buildings that have irregular shapes or whose top 

surface is broken. Also, it is unable to effectively 

eliminate interfering surface objects (e.g., vehicles 

and containers) whose appearance is similar to 

buildings and whose locations change frequently. 

Hence, SGMBCD suffers from some misdetections 

and omissions. This paper has not yet to find a 

complete solution, and these two problems above are 

the focus of future work. 
 

7. Conclusions 
 

In order to detect building changes in multi-temporal 

HRRS images more accurately and efficiently, this 

paper proposed a sub-graph matching-based building 

changes detection(SGMBCD) scheme which is 

capable of effectively removing the influence of many 

factors (e.g., camera angle, noise, deviation, 

distortion, and shadows) on detection. SGMBCD is 

compared with five other algorithms (i.e., BCDBPM, 

SDBBCD, BCDBICO, NCUTBCD, and RSMBCD) 

on three sets of multi-temporal WorldView2 test 

images. Experimental results show that SGMBCD has 

higher accuracy and efficiency overall, with average 

recall and precision ratios of 91.47% and 86.49%, 

average value of F of 88.91%, and average time 

consumption of 60.3 s. SGMBCD is also well suited 

for building changes detection in HRRS images with 

different resolutions. However, the proposed 

SGMBCD also has some limitations. For example, 

SGMBCD has not yet to completely automate the 

optimization of parameters (thresholds). Also, 

SGMBCD is inaccurate for buildings whose shapes 

are irregular, whose top surface is broken, whose 

appearance is similar to buildings and whose locations 

change frequently. In future work, we will take these 

problems into account to find a more accurate, 

efficient and automatic detection method. 
 

8. Acknowledgements 
 

This work was funded by Program for Outstanding 

Youth Scientific Research Talents Cultivation in 

Fujian Province University (2015) and China 

Postdoctoral Science Foundation Project 

(2015M571963). The authors would like to thank 

R.Xu and Q.Weng from Spatial Information 

Engineering Research Centre of Fujian Province in 

Fuzhou University for useful assistance, suggestions, 

and discussions. 
 

References 
 

[1] C.Tao, Research on Urban and Building 

Detection from High Resolution Remotely Sensed 

Imagery, Doctoral thesis, Huazhong University of 

Science and Technology, Wuhan ,2012.  

[2] B.Sirmacek and C.Unsalan, “Urban Area 

Detection Using Local Feature Points and Spatial 

Voting”, IEEE Geoscience and Remote Sensing 

Letters,Vol.7,No.1, PP.146-150,2010. 

[3] W.Su, J.Li, Y.H.Chen, Z.G. Liu, J.S.Zhang, 

T.M.Low, I.Suppiah and S.A.M.Hashim, 

“Textual and Local Spatial Statistics for the 

Object-oriented Classification of Urban Areas 

Using High Resolution Imagery”, International 

Journal of Remote Sensing, Vol.29, No.11, 

PP.3105-3117, 2008. 

[4] B.Sirmacek and C.Unsalan, “Urban-Area and 

Building Detection Using SIFT Keypoints and 



Sub-Graph Matching-Based Building Changes Detection Using High-Resolution  

Remote Sensing Images 

International Journal of Earth Sciences and Engineering 

ISSN 0974-5904, Vol. 09, No. 05, October, 2016, pp. 2172-2181 

2181 

Graph Theory”, IEEE Transactions on 

Geoscience and Remote Sensing, Vol.47, No.4, 

PP.1156-1167, 2009. 

[5] W.Liu and V. Prinet, “Building Detection from 

High-Resolution satellite Image Using 

Probability Modeling”, International 

Geosciences and Remote Sensing Symposium 

(IGARSS2005), PP.3888-3891, Seoul, Korea, 

2005.  

[6] S.P.Ji and X.X.Yuan, “A Method for Shadow 

Detection and Change Detection of Man-made 

Objects”, Journal of Remote Sensing, Vol.11, 

No.3, PP.323-329, 2007. 

[7] C.L.Liu, The Technology Study of Buildings 

Change Detection Based on Multi-temporal 

Remote Sensing Images, Master thesis, Harbin 

Institute of Technology, Harbin, 2014. 

[8] W.Z.Shi and Z.Y. Mao, “The Research on 

Building Change Detection from High Resolution 

Remotely Sensed Imagery Based on Graph-cut 

Segmentation”, Journal of Geo-Information 

Science, Vol.18, No.3, PP.423-432, 2016. 

[9] X.L.Song and W.M.Li, “Local Image Matching 

towards Building Change Detection in Remote 

Sensing Images”, Microcomputer Information, 

Vol.24, No.19, PP.270-272, 2008. 

[10] J.M.Morel and G.S.Yu, “ASIFT: A new 

framework for fully affine invariant image 

comparison”, Siam Journal on Imaging Sciences, 

Vol.2, No.2, PP.438-469, 2009. 

[11] X.Zhao, Q.Zhu, X.W.Xiao, D.R.Li, B.X.Guo, 

P.Zhang, H.Hu and Y.L.Ding, “Automatic 

matching method for aviation oblique images 

based on homography transformation”, Journal 

of Computer Application, Vol.35, No.6, PP.1720-

1725, 2015. 

[12] X.W.Xiao, D.R.Li, B.X.Guo, Y.Jiang, Y.F.Yu 

and J.C.Liu, “A Robust and Rapid Viewpint-

Invariant Matching Method for Oblique Images”, 

Geomatics and Information Science of Wuhan 

University, Vol.40, No.6, PP.1-9, 2015. 

[13] X.W.Xiao, B.X.Guo, D.R.Li, X.Zhao, W.S.Jiang, 

H.Hu and C.S.Zhang, “A Quick and Affine 

Invariance Matching Method for Oblique 

Images”, Acta Geodaetica Et Cartographica 

Sinica, Vol.44, No.4, PP. 414-421, 2015.  

[14] J.Cao, W.J.Wang, F.Han and Y.S.Liu, “Study on 

Local Feature-based Image Target Recognition”, 

Computer Engineering, Vol.36, No.10, PP.203-

205, 2010.  

[15] T.W.Qu, B.An and G.L.Chen, “Application of 

Improved RANSAC Algorithm to Image 

Registration”, Journal of Computer Applications, 

Vol.30, No.7, PP. 1849-1851, 2010. 

[16] Z.Q.Zhang and W.Y.Wang, “A Modified 

Bilateral Filtering Algorithm”, Journal of Image 

& Graphics, Vol.14, No.3, PP.443-447, 2009. 

[17] A.O.Ok, “Automated Detection of Buildings 

from Single VHR Multispectral Images Using 

Shadow Information and Graph Cuts”, ISPRS 

Journal of Photogrammetry & Remote Sensing, 

Vol.86, No.12, PP.21-40, 2013. 

 

 


