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Abstract: Solving the shortest path of 3D terrain is widely requested. However, researchers have not been able 

to get a good solution due to the limitations of traditional technical means. Thanks to recent development and 

maturation of remote sensing technology, this paper presents a method of building 3D terrain model with remote 

sensing elevation data and finding the shortest path with Ant Colony Optimization (ACO). At the beginning, the 

paper analyzes the mainstream methods of solving the shortest path, and evaluates their advantages and 

disadvantages when applied to solving the shortest path in 3D space. In view of the excellent performance of the 

ACO, it is eventually adopted as the algorithm to solve the shortest path of 3D terrain. After introducing the 

principle and algorithm model of traditional 2D ACO, the paper improves the algorithm by re-designing the 

heuristic function, pheromone update strategy, and transfer rules, thereby applying the traditional algorithm to 

3D space. After that, the author downloads and resamples the remote sensing elevation data of Shipping County, 

Yunnan Province, extracts the elevation data from the resampled data, and established a 3D mountain 

environment model. Based on the model, the author successfully conducts an experiment of solving the shortest 

path of 3D terrain with ACO. 
 

Keywords: remote sensing, ant colony optimization, the shortest path, 3D terrain 
 

 

1. Introduction 
 

Solving the shortest path is a common concern and 

the object of study by researchers from various 

backgrounds[1-3]. In a 2D space, path solving is one 

of the basic research targets in graph theory. 

Researchers often have to solve the shortest path 

when using graph theory to build math models for all 

sorts of practical problems, such as finding the 

shortest distance in logistics transportation, site 

selection for logistics centers, planning of 

communication lines, to name but a few. When it 

comes to 3D space models, the issue of solving the 

shortest path in 3D space arises. A good solution is 

needed for many practical issues, e.g. optimizing 

urban 3D pipe network, identifying the optimal route 

for submarines, improving the flight path of 

unmanned planes, selecting the routes for road 

pavement, and planning the line of march. As a result, 

it is very urgent to solve the question of finding and 

calculating the shortest path in 3D space. 
 

Fortunately, thanks to the rapid development of 

remote sensing technology, high-resolution satellite 

remote sensing images and stereopairs are now 

available to researchers. After processing and 

analyzing these data, researchers can easily extract 

dynamic surface topography and terrain features in 

real time[4-5]. These feature data help to generate 3D 

spatial data easily and quickly. Against this backdrop, 

this paper proposes to solve the shortest path in 3D 

space through the combination of remote sensing 

elevation data and artificial intelligence algorithm. 
 

2. The Selection of Intelligent Algorithms 
 

At present, researchers at home and abroad mainly 

use the following algorithms in path planning: A* 

search algorithm, artificial potential field method, 

genetic algorithm and ACO. 
 

A* search algorithm is a heuristic search algorithm 

first proposed in 1968[6]. The algorithm pinpoints the 

best position through evaluation of the neighboring or 

adjacent positions of each search position, searches 

from the best position all the way to the target 

position, and finally determines the least-cost path 

from the starting position to the target position. This 

method improves search efficiency by eliminating a 

great number of unnecessary search paths. A* search 

algorithm has good performance in 2D space, but runs 

rather slowly in 3D space due to the drastic increase 

of state places. 
 

The artificial potential field method is proposed by 

Khatib in 1986[7]. Its basic idea is to virtualize the 

motion space of a robot into a gravitational potential 

field so that the robot moving in the field is attracted 

by the gravitational field of its target position and 

repelled by the repulsion field of the obstacle, and 

control the movement by the combined effect the 

resultant force. Although it is simple and easy to 

implement, the algorithm often stops at local optimal 

solutions and lacks stability. 
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Developed at the intersection of life science and 

engineering science, genetic algorithm is a new 

algorithm that finds global optimal solution through 

randomized search and simulation of the natural 

evolution process. The algorithm is a four-step 

process, involving coding, selection, crossover and 

mutation. To use this algorithm, the user has to 

abstracts a specific problem to be optimized as a set of 

individuals, and encodes a “0”, “1” string for each 

individual. Next, substitute the encoded individuals 

into the fitness function, and select the superior 

individuals according to fitness level to form a new 

population. Crossing and mutation of the newly 

formed population re-create a new population. The 

new population is more adaptable to the environment 

than previous generations. Find an approximate 

optimal solution by decoding the individuals of the 

last population[8]. When genetic algorithm is adopted 

for 3D path planning, it works well in a simple 

environment, but when the environment is complex, it 

will be difficult to find a feasible path to satisfy the 

constraints. 
 

The ACO is a bio-inspired optimization algorithm 

proposed by the Italian scholar Dorigo et al. in early 

1990s in light of the group foraging habit of ants. 

When ants go out foraging, they leave a volatile 

substance called pheromone on the path. The more 

ants pass through the path, the higher the 

accumulation of pheromone is. During the foraging 

process, the ants that pass through later can perceive 

the strength of this substance on the path and tend to 

select the path with a high concentration of 

pheromone. The group decision-making ensures that 

ants can find the best path from the nest to the food. 

This algorithm has been widely used, and has been 

applied to the traveling salesman problem, graph 

coloring problem, quadratic assignment problem, 

robot path planning problem, workpiece scheduling 

problem, vehicle routing problem and network routing 

problem[9]. The ACO has many advantages over 

other algorithms, such as being simple and easy to 

implement, less dependent on empirical parameters, 

insensitive to initial value and parameter selection, 

strong robustness, fast convergence speed and not 

easy to fall into local optimal solution. If it is 

extended from 2D space to 3D space, the ACO would 

feature little storage space and low computational 

complexity. Based on the above analysis, the author 

decides to use the ACO to solve the shortest path of 

3D terrain space. 
 

3. Implementation of the ACO 
 

3.1. The Biological Description of the ACO 
 

According to bionics studies, ants have no vision. To 

make up for the loss of sight, they would release 

pheromone, a kind of secretion, during path finding. 

Ants tend to choose the path of high pheromone 

concentration. Therefore, when a certain path is 

relatively short, the pheromone volatilization on this 

path is smaller over the same period, resulting in 

higher pheromone concentration. The number of ants 

that choose this path will increase. In turn, the more 

ants choose this path, the higher amount of 

pheromones released on this path. Over time, the vast 

majority of ants would move along the shortest path, 

also known as the optimal path. Citing Figure 1 as an 

example, the author would explain the path selection 

principle of the ACO. 
 

 
 

Figure 1: The Path Selection Principle of the ACO 
 

As shown in Figure 1.a, suppose Point A is the nest, 

Point E is the food point, and Points C, B, D & H are 

the path points; assume the length of Paths BC & CD 

are both 1 and that of Paths BH & HD are both 2. If 

30 ants go out foraging at the same time, the 

following situations would occur. 
 

At t=0, there is no pheromone on any path, and the 

probability that ants choose each path is equal. As 

shown in Figure 1.b, 15 ants select Path BHD, and the 

15 ants choose Path BCD. The ants leave pheromones 

on their path, which evaporate over time. Assuming 

that the speed of advance of each ant is 2, the release 

and evaporation rate of pheromones are 1 per unit 

distance, then at the next moment, t=1, the pheromone 

accumulated on Path DCB is 30, and the pheromone 

accumulated on Path DHB is 15. Thus, when 30 ants 

return to nest A again, 10 ants select Path DHB, and 

20 choose Path DCB, as shown in Figure 1.c. As the 

pheromone on all paths continues to get enhanced and 

volatilized, eventually the ants only move on the 

shortest path ABCDE from nest to food, while other 

longer paths are gradually abandoned. 
 

3.2. The Math Model of Traditional Ant Colony 

Algorithm 
 

Established on the basis of bionics characteristics of 

ant foraging, the ACO is illustrated with the following 

math model: 
 

Without loss of generality, let the number of ants in 

an ant population be M, and the probability that ants 

at position I at time t choose to arrive at the position j 

is: 
 

           (1) 

 

Where,  is the heuristic function displaying the 

heuristic information of the ants moving from position 

i to position j at time t. β is the parameter to adjust the 

influence degree of the heuristic function to the 
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decision. The larger the value of β, the greater the 

heuristic function plays in the transfer.  stands 

for the pheromone concentration on path <i, j> at time 

t, and α is the importance factor of pheromone. The 

larger the value of α, the greater the pheromone 

concentration plays in the transfer.  means 

the position that the k-th ant can reach. 
 

During the path-finding process from the starting 

point to the target point, the ants keep releasing 

pheromone, while the pheromone on each path 

gradually evaporates. Therefore, the pheromone on 

each path needs to be updated in real time. The 

pheromone update formula is: 
 

        (2) 

 

Where,  is the pheromone evaporation factor 

describing the degree of evaporation;  denotes 

the pheromone concentration on the path <i, j> at time 

t;  refers to the amount of pheromone released by 

the k-th ant on the path <i, j>;  represents the total 

concentration of pheromones released by all ants on 

the path <i, j>. 
 

In the pheromone update formula,  refers to the 

amount of pheromone released by the k-th ant on the 

path <i, j>. According to different pheromone release 

methods, the traditional ACO can be divided into 

three different basic models, namely: ant quantity 

system, ant density system and ant cycle system. The 

models are described as follows: 
 

ant quantity system:                             (3) 
 

Where, Q is a constant representing the pheromone 

concentration of the ACO and  illustrates the length 

of the path <i, j> covered by the k-th ant. 
 

ant density system:                                     (4) 
 

Where, Q is a constant representing the pheromone 

concentration of the ACO. 
 

ant cycle system:                                  (5) 
 

Where, Q is a constant representing the pheromone 

concentration of the ant colony algorithm, and  

illustrates the length of the path covered by the k-th 

ant. 
 

4. Implementation of the Solution to the Shortest 

Path of 3D Terrain Based on Remote Sensing 

Elevation Data and Ant Colony Optimization 
 

4.1. Data Preparation 
 

In this study, the author selects the 15km long square 

area centering on the location at 102.5°E, 24.5°N as 

the research object. Situated in Shiping County, 

Yunnan Province, the area is dominated by 

mountainous terrain. 

The author downloads GDEM DEM 30M digital 

elevation data of the research object from Geospatial 

Data Cloud (http://www.gscloud.cn). The elevation 

data thus acquired is shown in the following figure: 
 

 
 

Figure 2:  Elevation Data of the Research Object 
 

Due to the excessively large size, the original remote 

sensing data needs to be re-sampled. In this study, 

cubic convolution interpolation[10] is used for 

resampling. The resampled results are shown in the 

following figure: 
 

 
 

Figure 3:  Resampled Results 
 

4.2. 3D Environment Modeling Based on Remote 

Sensing Images 
 

Environmental modeling aims at simulating real 3D 

spatial environment information in an abstract way. In 

this study, the geo-elevation data extracted from the 

above resampling process is used to simulate real 

mountain topography. The simulation results are 

shown in the following figure: 
 

 
 

Figure 4:  Mountainous Terrain Simulation Diagram 
 

http://www.gscloud.cn/
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On the basis of the mountainous terrain simulation 

diagram, build a 3D space coordinate system with the 

vertex at the lower left corner as the coordinate origin 

O, the ascending direction of the longitude as x-axis, 

the ascending direction of latitude as y-axis and the 

ascending direction of height as z-axis. Then, map the 

vertex at the lower left corner of the mountainous 

terrain model to the coordinate origin O, and establish 

the path space of the simulated mountainous terrain 

ABCD-EFGH with the length, width and height of the 

mountain as the boundary. After the 3D path space is 

established, discretize the 3D space into grid points by 

dividing the space into aliquots. The method goes as 

follows: obtain n-1 spaces (n=1,2,…,n-1) by 

dividing the space of Edge AB into n equal segments 

along axis-x. Likewise, divide the space of Edge AE 

into m equal segments along axis-y, and divide the 

space of Edge AD into k equal segments along axis-z. 

With the above operations, it is easy to find the 

intersections of these segmented planes, which are the 

3D space path points to be planned. In this way, the 

3D space ABCD-EFGH is discretized into a number 

of grid points in a 3D space. The results are shown in 

the following figure: 
 

 
 

Figure 5:  Grid Points in 3D Space 
 

4.3. Solution to the Shortest Path of 3D Space with 

the ACO 
 

4.3.1. Design of the Heuristic Function 
 

The heuristic function is designed based on the 

principle of shortest path reachability and path 

distance. According to Equation 1, the heuristic 

function plays an important role in planning a feasible 

path as it affects the convergence and stability of the 

ACO. For any point (i, j, k), the heuristic function H 

(i,j,k) goes as follows: 
 

    (6) 
 

S (i, j, k) is the path reachability factor. If the path is 

reachable, its value is 1. If the path is unreachable, its 

value is 0.  is a constant representing the influence 

coefficient of path reachability factor. 
 

D (i, j, k) is the shortest distance factor, while  is a 

constant representing the influence coefficient of the 

shortest factor. D (i, j, k) causes the ants to choose the 

closer path. Assuming that a is the current point and b 

is the next point, D (i, j, k) is calculated as: 
 

    (7) 
 

Q (i, j, k) is the distance from the target location 

factor, while is a constant representing the influence 

coefficient of the distance from the target location 

factor. Assuming that a is the target point, b is the 

next point, Q (i, j, k) is calculated as: 
 

   (8) 
 

4.3.2. The Design of Pheromone Update Strategy 
 

The pheromone is stored in discrete grid points of the 
3D model and the pheromone at each discrete point 
decreases with time. When an ant passes by a certain 
point, the pheromone would increase. According to 
Pheromone Update Equation 2, the pheromone update 
model of all discrete points on the 3D model is: 
 

                                     (9) 
 

Where, t refers to time,  the pheromone value on 

the point (i,j,k), and ρ the attenuation coefficient of 

the pheromone. 
 

When an ant passes by a certain point, the pheromone 

at the point would be updated. The ant quantity 

system (See Equation 3) to update the pheromone 

model, which goes as follows: 
 

  (10) 

 

Where, t refers to time,  the pheromone value on 

the point (i, j, k), ρ the attenuation coefficient of the 

pheromone, and  the length of the path covered 

by the m-th ant passing by the spatial point (i, j, k). 
 

4.3.3. The Design of Transfer Rules 
 

Assuming that  is a point on the plane ,  is a 
point on the plane , and allowed is the set of all 
accessible points on the paths from  to , then 
the probability that an ant chooses to go to  from 

 is: 
 

             (11) 

 

Arrange the probabilities of every selected points  

in ascending order in the interval [0,1], and randomly 

generate a number p from the interval. Find the 

interval which the   corresponding to the number 

p falls into for it contains the point to be chosen for 

the next path. 
 

5. Experimental Results 
 

The program is set as follows: abstract the 3D terrain 

space as a 21x21x21 3D space of discrete points, set 

the number of ants m=50, the maximum number of 

cycles n=200, the path reachability factor 1, the 

influence coefficient of the shortest distance factor 

= 1, the influence coefficient of the distance from 
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the target point =1, and the pheromone attenuation 

coefficient ρ=0.4, and regard the point 

[0,10,2]START as the starting position and the point 

[0,12,1]END as the target position. After running the 

program, the author finds the shortest path of the 3D 

mountain terrain. The results are shown in the 

following figure. 
 

 
 

Figure 6:  Search Results of the Shortest Path of 3D 

Mountain Terrain 
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