
 
www.cafetinnova.org 

Indexed in 

Scopus Compendex and Geobase Elsevier,  

Geo-Ref Information Services-USA, List B of Scientific 

Journals, Poland, Directory of Research Journals 

 

ISSN 0974-5904, Volume 09, No. 05 

 
 

   October 2016, P.P.2315-2320 
 

 

 

#02090569 Copyright ©2016 CAFET-INNOVA TECHNICAL SOCIETY. All rights reserved. 

Three-Dimensional Simulation on Urban Waterlogging and 

Seeper Based on WebGL 
 

ZHANG CHENGCA, ZHANG LINGJIE AND ZHU ZULE 
School of Water Conservancy & Environment, Zhengzhou University, Zhengzhou 450001, China 

Email: zhangcc2000@163.com 
 

 

Abstract: Urban waterlogging refers to the seeper disaster caused by heavy or continuous precipitation that 

exceeds the city’s drainage capacity. A heavy and focused rainfall, together with large hardening area, can make 

the rainwater difficult to infiltrate and easily form urban waterlogging. This article achieved the network 

visualization of three-dimensional (3D) scenes of city’s main flooded roads based on WebGL. Owing to its a 

series of advantages, such as being free from browse plug-ins, acceleration by directly calling GPU and 

Javascript-based strong interoperability, WebGL can make the browse more smooth, the rendering more 

colorful and the operation more convenient and truly reconstruct the city’s waterlogging scene by conducting 

3D dynamic simulation on the submerging process. The combination between 3D visualization and urban 

rainfall and flood simulation can reproduce urban waterlogging process and thus provide a new way of 

investigating urban waterlogging and seeper. 
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1. Introduction 
 

In recent years, urban waterlogging and seeper issue 
has become increasingly prominent, which greatly 
affected urban residents’ daily work. More seriously, 
it can cause damage to urban infrastructure and 
threaten people’s lives and property. Three-
dimensional (3D) visualization technology can 
visually display, reconstruct and simulate urban 
waterlogging and seeper in all directions. Thus, the 
combination of 3D visualization technology and urban 
rainfall flood simulation is of great significance.  
 

In 1971, with support from U.S. Environment 
Protection Agency, the University of Florida (UFL), 
Metcalf & Eddy Company (M&E), Water Resource 
Company (WRE) jointly developed SWMM model, 
which marked the advent of computer modeling era of 
urban drainage network. Afterwards, various urban 
drainage models such as the drainage simulation 
model for Illinois (ILLUDAS), sheetflood storage and 
processing model developed by U.S.  
 

Army Corps of Engineers (STORM) and urban runoff 
model developed by the University of Cincinnati 
(UCURM) appeared successively. In the meantime, 
the researchers also developed many urban flood 
hygrograph and rainfall flood simulation models, such 
as ISS, HSP, DR3M-QUAL, LAVRENSON, 
CAREPAS, QQS, RATIONAL and WFP. These in-
depth studies on the simulation model of urban 
drainage system have laid the foundation for the 
subsequent development of urban flood simulation 
software. 
 

On October 29, 2014, the World Wide Web 
Consortium (WSC) announced that HTML5 standard 
were finally formulated and successfully published. 
Some technologies of HTML5 have been put to use in 
succession. Based on 3D function of Canvas, WebGL, 

SVG and CSS3, the visual effects presented in the 
browser-side are amazing. Specifically, based on 
OpenGL ES 2.0 standard, WebGL (abbreviation of 
Web-based Graphics Language) is a cross-platform 
and free Web standard of underlying 3D plotting 
application program interface (API). WebGL, 
included in HTML5 standard, is a kind of 3D image 
rendering technology on the web page. Using the 
exposed DOM programming interface of HTML5 
Canvas, WebGL provides the method of interaction 
between JavaScript and GPU, makes the browser get 
free of the trouble of using plug-ins and can finish 
web rendering by directly invoking the graphics 
processing unit (GPU) in graphics card. Thus, not 
only the web pages can be displayed faster; but also 
the unified, standard and cross-platform OpenGL 
programming interface is used. WebGL aroused the 
interests and attention all over the world as it 
emerged, and many international mainstream IT 
companies such as Apple, Google and Microsoft 
expressed their supports for WebGL, thus promoting 
its development. 
 

The appearance of WebGL exactly solves the above-
described two questions. Firstly, WebGL can achieve 
the creation of Web interactive 3D graphics programs 
through JavaScript and need no supports from 
browser plug-in. Secondly, WebGL’s graphics 
rendering using the underlying graphics hardware 
acceleration function can be achieved through unified, 
standard and cross-platform OpenGL interfaces. It 
means that, without the use of any browser plug-ins, 
Web interactive 3D graphics applications can be 
created only using HTML and Javascript, while the 
applications’ visual effects and performance can be 
comparable to those made using Flash3D and 
Silverlight; moreover, the applications can operates 
on any platforms in a same way, which can be 
regarded as a revolutionary change. 
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Based on WebGL, this article achieved the terrain 

rendering, texture mapping and building model 

loading for the city’s main flooded roads and 3D 

simulation on the urban waterlogging, which can 

serve as a new approach to investigating urban 

waterlogging process. 
 

2. Construction of 3D web scene 
 

This study constructed the 3D scene of some main 

flooded roads using Three.js (the Javascript 3D library 

for WebGL). The local Web server was first 

constructed and some external resources such as 3D 

models and texture images were loaded. Then, the 

scene was constructed using the source codes such as 

THREE. Scene,THREE. Perspective Camera, 

THREE. WebGL Render and THREE. Lightsource. 
 

2.1 Terrain rendering based on Three.js 
 

In this study, the .ASCII file in the format of GRID 

(Esri Company) was used for representing digital 

elevation model (DEM), which mainly consists of 

data head and data body. Data heads are listed line by 

line according to the format of attribute value pair, as 

shown in Table 1.  
 

Data bodies are arranged line by line from left to right 

in accordance with row and column of DEM, and the 

values of DEM are separated by a spacing. 
 

The key to terrain rendering is to determine the 

correspondence between the coordinate (X, Y) of each 

vertice on the 3D terrain surface and the column/line 

number of DEM grid (M, N), and then express the 

elevation value of each vertice on the 3D terrain 

surface using the elevation value of DEM grid.  
 

Three.js provides THREE.PlaneGeometry for 3D 

plane plotting. THREE.PlaneGeometry inherited from 

THREE.Geometry and possesses the attribute of 

.vertices. Thus, the size of the plotted surface and the 

number of vertices can be controlled by setting the 

length and width of THREE. Geometry and the 

number of segments, while the topographic 

characteristics can be reconstructed by setting the 

.vertices attributes of the objects created by 

PlaneGeometry. Class. 
 

The coordinates and elevation values of each vertice 

are required before terrain rendering. Since DEM 

exhibits great numbers of column and row, the 

rendering should be conducted by means of diluting 

and interpolation (see Fig. 1). The rendering process 

is described in detail below. 
 

Table 1 Definitions of each attribute value pair of .asc files 
 

Attribute Value Comment 

ncols 921 Column number of DEM grid 

nrows 795 Row number of DEM grid 

xllcorner 12591782.194844 X-coordinate of the lower-left corner of DEM grid 

yllcorner 4111893.9287671 Y-coordinate in the lower-left corner of DEM grid 

cellsize 10.290469083668 Spacing lengths between DEM grids 

NODATA_value -9999 Null in DEM 
 

 
 

Fig. 1 Correspondence between DEM grid and 3D 

surface 
 

Firstly, the positions of each vertice of 

PlaneGeometry were acquired. As stated above, given 

the following information, xllcorner, yllcorner, 

cellsize, nrows, ncols, length, width (as defined in 

Table 1), length and width of the known 

PlaneGeometry (denoted as length and width), the 

number of sections along horizontal and vertical 

directions (denoted as xSegs and ySegs), the 

coordinates of upper-left corner of DEM grid (X(0,0), 

Y(0,0)), the coordinate of any a vertice (the i-th row, 

the j-th column) in PlaneGeometry can be calculated 

by Formula (2.1). 
 

Based on the coordinates of the lower-left corner of 

DEM, the coordinates of the upper-left corner can be 

written as (xllcornery+(nrows-1)*cellsize), and the 

coordinates corresponding to (X(i,j), Y(i,j)) in DEM 

can be calculated by Formula (2.2). 
 

In Eq. (2.2), m and n are the numbers of rows and 

columns of DEM grid. By combining Eq. (2.1) and 

Eq. (2.2), m and n can be solved and written as 

Formula (2.3). 
 

Then, m and n were rounded up and off and the 

integers M and N were acquired, which were the 

column and row number of the vertice closest to the 

upper-left corner of DEM. 
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The elevation values of each DEM vertice were taken 

out and stored in the two-dimensional array demArr[ 

][ ], and the elevation values of the surrounding four 

vertices of (X(i,j), Y(i,j)) were calculated and listed in 

Table 2. 
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Fig. 2 Relation between (X(i,j), Y(i,j)) and the 

corresponding DEM grid 
 

Table 2 Elevation values of the surrounding four 

vertices of (X(i,j), Y(i,j) 
 

Position Elevation 

Upper-left demArr[M][N] 

Lower-left demArr[M+1][N] 

Upper-right demArr[M][N+1] 

Lower-right demArr[M+1][N+1] 
 

Then, Z (i, j) was assigned using bilinear 

interpolation. Bilinear interpolation refers to the linear 

interpolation of a two-variable interpolation function, 

whose core idea is to conduct linear interpolation in 

two directions. The interpolation of Z (i, j) can be 

described as Formula (2.4). 
 

Finally, the Z values of all vertices of PlaneGeometry 

were calculated through circular calculation, which 

were then assigned to the z values of the vertices in 

THREE.PlaneGeometry for rendering. The number of 

vertices in PlaneGeometry is (xSegs+1)*(ySegs+1). 

The detailed rendering process is shown in Fig. 3.Fig. 

4 displays the results of terrain rendering on the 

browser. 
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Fig. 3 Flowchart of road terrain rendering 
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Fig. 4 Displays the results of terrain 
 

2.2 Texture mapping and the loading of building 

model 
 

‘Material’ is an attribute connected with rendering 

effects but independent of the object’s vertice 

information. The object’s color, texture and lighting 

model can be changed by setting different values of 

‘material’. Three.js provides the following several 

basic materials: MeshBasicMaterial, 

MeshLambertMaterial, MeshPhongMaterial and 

MeshNormalMaterial. 
 

Lambert material conforms to Lambert lighting 

model, i.e., only the diffuse reflection effect is 

considered while the specular reflection effect is 

neglected. Thus, this model is not applicable to the 

objects that require specular reflection effect such as 

metal and mirror, but is suitable for describing the 

diffuse reflection effects of most objects. 
 

Lambert lighting model can be described as: 
 

Idiffuse = Kd * Id * cos(theta)                            (5.5) 
 

where Idiffuse denotes the light intensity of diffuse 

reflection, Kd denotes the diffuse reflection property 

of the object surface, Id denotes the light intensity and 

theta denotes the radian of the incident/incidence 

angle. 
 

The Lambert materials in Three.js can be directly 

used without a thorough understanding of the above 

formula. For creating a yellow Lambert material, we 

can use the following command: 
 

new THREE.MeshLambertMaterial 

({color: 0xffff00}); 
 

Since the roads and buildings in the city can be 

roughly described using Lambert light model, 

Lambert material was adopted for texture mapping. 

The geometry of terrain grid PlaneGeometry[i][j] one-

to-one corresponds to texture image in the tile file. 

Firstly, texture image should be imported to texture 

object: 
 

var texture = 

THREE.ImageUtils.loadTexture('../img/0.png'); 

Then, the material’s ‘map’ attribute should be set as 

‘texture’: 
 

var material = new 

THREE.MeshLambertMaterial({map:texture}); 
 

Finally, material was assigned to the corresponding 

PlaneGeometry[i][j], and thus texture mapping was 

finished. 
 

Next, the building model was loaded. Three.js 

provides abundant model input interfaces and can 

conveniently import the files in the formats of JSON, 

OBJ, Collada, PLY, STL and VTK. This study used 

the .obj model file exported from 3dmax and the 

texture mapping file .mtl, which can be well 

understood by Three. js. Moreover, Three. Js provides 

two different loaders. If only the geometry is loaded, 

OBJLoader can be used. This study used 

OBJMTLLoader for model loading and material 

assignment. The detailed loading code is described 

below: 
 

var loader = new THREE.OBJMTLLoader(); 

loader.load( 'model/export/22/22.obj', 

'model/export/22/22.mtl', function ( object )    { 

object.position.y = 0; 

object.position.x = 0; 

object.position.z = 0; 

scene.add( object );}, onProgress, onError ); 
 

After being loaded, the model was added to the scene 

using a callback function and the position was set. 

Fig. 5 shows the loading result. 
 

 
 

Fig. 5 3D scene renderin 
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3. 3D simulation on urban waterlogging and seeper 

process 
 

According to the calculated road submerged area and 

depth, 3D visualization was performed in 3D scenes. 

Then, all PlaneGeometrys were judged. If the 

submerged mark is FLood[i][j] of 

PlaneGeometry[i][j] was ‘TRUE’, the submerged 

water surface was added to the grid surface; else, the 

submerged water surface was not added. After all the 

judgment finished, the submerged area was acquired 

and the browsing effect of the submerged area in the 

browser is shown in Fig. 6. 
 

Then, the submerged range and depth within the 

whole rainfall time series were simulated. By adding 

the dynamic water surface to the 3D scene, the 

waterlogging depth and area within the corresponding 

time series were acquired, i.e., the submerged 

condition of the whole rainfall process was simulated. 

Fig. 7 shows the dynamic simulation results of rainfall 

and flood process according to the calculation results 
 

 
 

Fig.6 Submerging calculation renderings 
 

 
 

 
 

Fig.7 Dynamic simulation of rainfall and flood 

process 
 

4. Conclusions 
 

It is of great significance to conduct 3D dynamic 

simulations on urban waterlogging processes and 

analyze urban seeper conditions under different 

rainstorm scenes for urban disaster prevention and 

reduction, disaster evaluation, post-disaster 

reconstruction and economic and social 

developments. WebGL technical standard can use the 

no-rendering plug-ins to create the web pages with 

complex 3D structures and even design 3D web 

games. Owing to its several advantages such as cross-

language and cross-platform, WebGL can make one-

development and multiple-use possible, get easy 

access to and interact with the fantastic 3D scenes on 

both PCs and mobiles only with the aid of Web 

browser. WebGL technique can provide technological 

base for 3D visualization of the mass data concerning 

urban waterlogging using the network client. Three.js 

is one of the best graphics library and can create 

simple 3D scenes, cartoons and even interactive 

games. Three.js supports WebGL, SVG, Canvas and 

CSS3D rendering. This article used WebGL’s open 

source library Three.js to create 3D scenes, conducted 

3D surface drawing and texture mapping on road 

DEM, completed 3D scene rendering and finally 

carried out 3D dynamic simulations on urban 

waterlogging and seeper process. 
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