

www.cafetinnova.org

Indexed in

Scopus Compendex and Geobase Elsevier,

Geo-Ref Information Services-USA, List B of Scientific

Journals, Poland, Directory of Research Journals

ISSN 0974-5904, Volume 09, No. 05

 October 2016, P.P.2315-2320

#02090569 Copyright ©2016 CAFET-INNOVA TECHNICAL SOCIETY. All rights reserved.

Three-Dimensional Simulation on Urban Waterlogging and

Seeper Based on WebGL

ZHANG CHENGCA, ZHANG LINGJIE AND ZHU ZULE
School of Water Conservancy & Environment, Zhengzhou University, Zhengzhou 450001, China

Email: zhangcc2000@163.com

Abstract: Urban waterlogging refers to the seeper disaster caused by heavy or continuous precipitation that

exceeds the city’s drainage capacity. A heavy and focused rainfall, together with large hardening area, can make

the rainwater difficult to infiltrate and easily form urban waterlogging. This article achieved the network

visualization of three-dimensional (3D) scenes of city’s main flooded roads based on WebGL. Owing to its a

series of advantages, such as being free from browse plug-ins, acceleration by directly calling GPU and

Javascript-based strong interoperability, WebGL can make the browse more smooth, the rendering more

colorful and the operation more convenient and truly reconstruct the city’s waterlogging scene by conducting

3D dynamic simulation on the submerging process. The combination between 3D visualization and urban

rainfall and flood simulation can reproduce urban waterlogging process and thus provide a new way of

investigating urban waterlogging and seeper.

Keywords: WebGL; urban waterlogging; terrain rendering; three-dimensional (3D) simulation

1. Introduction

In recent years, urban waterlogging and seeper issue
has become increasingly prominent, which greatly
affected urban residents’ daily work. More seriously,
it can cause damage to urban infrastructure and
threaten people’s lives and property. Three-
dimensional (3D) visualization technology can
visually display, reconstruct and simulate urban
waterlogging and seeper in all directions. Thus, the
combination of 3D visualization technology and urban
rainfall flood simulation is of great significance.

In 1971, with support from U.S. Environment
Protection Agency, the University of Florida (UFL),
Metcalf & Eddy Company (M&E), Water Resource
Company (WRE) jointly developed SWMM model,
which marked the advent of computer modeling era of
urban drainage network. Afterwards, various urban
drainage models such as the drainage simulation
model for Illinois (ILLUDAS), sheetflood storage and
processing model developed by U.S.

Army Corps of Engineers (STORM) and urban runoff
model developed by the University of Cincinnati
(UCURM) appeared successively. In the meantime,
the researchers also developed many urban flood
hygrograph and rainfall flood simulation models, such
as ISS, HSP, DR3M-QUAL, LAVRENSON,
CAREPAS, QQS, RATIONAL and WFP. These in-
depth studies on the simulation model of urban
drainage system have laid the foundation for the
subsequent development of urban flood simulation
software.

On October 29, 2014, the World Wide Web
Consortium (WSC) announced that HTML5 standard
were finally formulated and successfully published.
Some technologies of HTML5 have been put to use in
succession. Based on 3D function of Canvas, WebGL,

SVG and CSS3, the visual effects presented in the
browser-side are amazing. Specifically, based on
OpenGL ES 2.0 standard, WebGL (abbreviation of
Web-based Graphics Language) is a cross-platform
and free Web standard of underlying 3D plotting
application program interface (API). WebGL,
included in HTML5 standard, is a kind of 3D image
rendering technology on the web page. Using the
exposed DOM programming interface of HTML5
Canvas, WebGL provides the method of interaction
between JavaScript and GPU, makes the browser get
free of the trouble of using plug-ins and can finish
web rendering by directly invoking the graphics
processing unit (GPU) in graphics card. Thus, not
only the web pages can be displayed faster; but also
the unified, standard and cross-platform OpenGL
programming interface is used. WebGL aroused the
interests and attention all over the world as it
emerged, and many international mainstream IT
companies such as Apple, Google and Microsoft
expressed their supports for WebGL, thus promoting
its development.

The appearance of WebGL exactly solves the above-
described two questions. Firstly, WebGL can achieve
the creation of Web interactive 3D graphics programs
through JavaScript and need no supports from
browser plug-in. Secondly, WebGL’s graphics
rendering using the underlying graphics hardware
acceleration function can be achieved through unified,
standard and cross-platform OpenGL interfaces. It
means that, without the use of any browser plug-ins,
Web interactive 3D graphics applications can be
created only using HTML and Javascript, while the
applications’ visual effects and performance can be
comparable to those made using Flash3D and
Silverlight; moreover, the applications can operates
on any platforms in a same way, which can be
regarded as a revolutionary change.

ZHANG CHENGCA, ZHANG LINGJIE AND ZHU ZULE

International Journal of Earth Sciences and Engineering

ISSN 0974-5904, Vol. 09, No. 05, October, 2016, pp. 2315-2320

2316

Based on WebGL, this article achieved the terrain

rendering, texture mapping and building model

loading for the city’s main flooded roads and 3D

simulation on the urban waterlogging, which can

serve as a new approach to investigating urban

waterlogging process.

2. Construction of 3D web scene

This study constructed the 3D scene of some main

flooded roads using Three.js (the Javascript 3D library

for WebGL). The local Web server was first

constructed and some external resources such as 3D

models and texture images were loaded. Then, the

scene was constructed using the source codes such as

THREE. Scene,THREE. Perspective Camera,

THREE. WebGL Render and THREE. Lightsource.

2.1 Terrain rendering based on Three.js

In this study, the .ASCII file in the format of GRID

(Esri Company) was used for representing digital

elevation model (DEM), which mainly consists of

data head and data body. Data heads are listed line by

line according to the format of attribute value pair, as

shown in Table 1.

Data bodies are arranged line by line from left to right

in accordance with row and column of DEM, and the

values of DEM are separated by a spacing.

The key to terrain rendering is to determine the

correspondence between the coordinate (X, Y) of each

vertice on the 3D terrain surface and the column/line

number of DEM grid (M, N), and then express the

elevation value of each vertice on the 3D terrain

surface using the elevation value of DEM grid.

Three.js provides THREE.PlaneGeometry for 3D

plane plotting. THREE.PlaneGeometry inherited from

THREE.Geometry and possesses the attribute of

.vertices. Thus, the size of the plotted surface and the

number of vertices can be controlled by setting the

length and width of THREE. Geometry and the

number of segments, while the topographic

characteristics can be reconstructed by setting the

.vertices attributes of the objects created by

PlaneGeometry. Class.

The coordinates and elevation values of each vertice

are required before terrain rendering. Since DEM

exhibits great numbers of column and row, the

rendering should be conducted by means of diluting

and interpolation (see Fig. 1). The rendering process

is described in detail below.

Table 1 Definitions of each attribute value pair of .asc files

Attribute Value Comment

ncols 921 Column number of DEM grid

nrows 795 Row number of DEM grid

xllcorner 12591782.194844 X-coordinate of the lower-left corner of DEM grid

yllcorner 4111893.9287671 Y-coordinate in the lower-left corner of DEM grid

cellsize 10.290469083668 Spacing lengths between DEM grids

NODATA_value -9999 Null in DEM

Fig. 1 Correspondence between DEM grid and 3D

surface

Firstly, the positions of each vertice of

PlaneGeometry were acquired. As stated above, given

the following information, xllcorner, yllcorner,

cellsize, nrows, ncols, length, width (as defined in

Table 1), length and width of the known

PlaneGeometry (denoted as length and width), the

number of sections along horizontal and vertical

directions (denoted as xSegs and ySegs), the

coordinates of upper-left corner of DEM grid (X(0,0),

Y(0,0)), the coordinate of any a vertice (the i-th row,

the j-th column) in PlaneGeometry can be calculated

by Formula (2.1).

Based on the coordinates of the lower-left corner of

DEM, the coordinates of the upper-left corner can be

written as (xllcornery+(nrows-1)*cellsize), and the

coordinates corresponding to (X(i,j), Y(i,j)) in DEM

can be calculated by Formula (2.2).

In Eq. (2.2), m and n are the numbers of rows and

columns of DEM grid. By combining Eq. (2.1) and

Eq. (2.2), m and n can be solved and written as

Formula (2.3).

Then, m and n were rounded up and off and the

integers M and N were acquired, which were the

column and row number of the vertice closest to the

upper-left corner of DEM.

Three-Dimensional Simulation on Urban Waterlogging and Seeper Based on WebGL

International Journal of Earth Sciences and Engineering

ISSN 0974-5904, Vol. 09, No. 05, October, 2016, pp. 2315-2320

2317

The elevation values of each DEM vertice were taken

out and stored in the two-dimensional array demArr[

][], and the elevation values of the surrounding four

vertices of (X(i,j), Y(i,j)) were calculated and listed in

Table 2.

xSegs<=j<=ySegs,0<=i<=0 where
)xSegshight(*i+Y=Y

)xSegswidth(*j+X=X

(0,0)ji,

(0,0)ji,

）（

）（
 (2.1)

;xSegs<=j<=ySegs,0<=i<=0

;ncols<=n<=0,nrows<=m<=0
where

cellsize*m)-(nrows+yllcorner

*xll

),(

),(











ji

ji

Y

cellsizencornerX
 (2.2)

xSegs;<=j<=0

ySegs,<=i<=0
where

cellsizeyllcorner-)ySegsheight(*i+Y-nrows=

cellsizexllcorner-)xSegswidth(*j+X=n

(0,0)

(0,0)







）（

）（

m
 (2.3)

Fig. 2 Relation between (X(i,j), Y(i,j)) and the

corresponding DEM grid

Table 2 Elevation values of the surrounding four

vertices of (X(i,j), Y(i,j)

Position Elevation

Upper-left demArr[M][N]

Lower-left demArr[M+1][N]

Upper-right demArr[M][N+1]

Lower-right demArr[M+1][N+1]

Then, Z (i, j) was assigned using bilinear

interpolation. Bilinear interpolation refers to the linear

interpolation of a two-variable interpolation function,

whose core idea is to conduct linear interpolation in

two directions. The interpolation of Z (i, j) can be

described as Formula (2.4).

Finally, the Z values of all vertices of PlaneGeometry

were calculated through circular calculation, which

were then assigned to the z values of the vertices in

THREE.PlaneGeometry for rendering. The number of

vertices in PlaneGeometry is (xSegs+1)*(ySegs+1).

The detailed rendering process is shown in Fig. 3.Fig.

4 displays the results of terrain rendering on the

browser.

dy*dx*1]1][NdemArr[Mdy*dx)-(1*1]NdemArr[M][

dy)-(1*dx*1][N]demArr[Mdy)-(1*dx)-(1*N]demArr[M][Z),(



ji , where









m

N

Mdy

ndx

;

 (2.4)

Fig. 3 Flowchart of road terrain rendering

ZHANG CHENGCA, ZHANG LINGJIE AND ZHU ZULE

International Journal of Earth Sciences and Engineering

ISSN 0974-5904, Vol. 09, No. 05, October, 2016, pp. 2315-2320

2318

Fig. 4 Displays the results of terrain

2.2 Texture mapping and the loading of building

model

‘Material’ is an attribute connected with rendering

effects but independent of the object’s vertice

information. The object’s color, texture and lighting

model can be changed by setting different values of

‘material’. Three.js provides the following several

basic materials: MeshBasicMaterial,

MeshLambertMaterial, MeshPhongMaterial and

MeshNormalMaterial.

Lambert material conforms to Lambert lighting

model, i.e., only the diffuse reflection effect is

considered while the specular reflection effect is

neglected. Thus, this model is not applicable to the

objects that require specular reflection effect such as

metal and mirror, but is suitable for describing the

diffuse reflection effects of most objects.

Lambert lighting model can be described as:

Idiffuse = Kd * Id * cos(theta) (5.5)

where Idiffuse denotes the light intensity of diffuse

reflection, Kd denotes the diffuse reflection property

of the object surface, Id denotes the light intensity and

theta denotes the radian of the incident/incidence

angle.

The Lambert materials in Three.js can be directly

used without a thorough understanding of the above

formula. For creating a yellow Lambert material, we

can use the following command:

new THREE.MeshLambertMaterial

({color: 0xffff00});

Since the roads and buildings in the city can be

roughly described using Lambert light model,

Lambert material was adopted for texture mapping.

The geometry of terrain grid PlaneGeometry[i][j] one-

to-one corresponds to texture image in the tile file.

Firstly, texture image should be imported to texture

object:

var texture =

THREE.ImageUtils.loadTexture('../img/0.png');

Then, the material’s ‘map’ attribute should be set as

‘texture’:

var material = new

THREE.MeshLambertMaterial({map:texture});

Finally, material was assigned to the corresponding

PlaneGeometry[i][j], and thus texture mapping was

finished.

Next, the building model was loaded. Three.js

provides abundant model input interfaces and can

conveniently import the files in the formats of JSON,

OBJ, Collada, PLY, STL and VTK. This study used

the .obj model file exported from 3dmax and the

texture mapping file .mtl, which can be well

understood by Three. js. Moreover, Three. Js provides

two different loaders. If only the geometry is loaded,

OBJLoader can be used. This study used

OBJMTLLoader for model loading and material

assignment. The detailed loading code is described

below:

var loader = new THREE.OBJMTLLoader();

loader.load('model/export/22/22.obj',

'model/export/22/22.mtl', function (object) {

object.position.y = 0;

object.position.x = 0;

object.position.z = 0;

scene.add(object);}, onProgress, onError);

After being loaded, the model was added to the scene

using a callback function and the position was set.

Fig. 5 shows the loading result.

Fig. 5 3D scene renderin

Three-Dimensional Simulation on Urban Waterlogging and Seeper Based on WebGL

International Journal of Earth Sciences and Engineering

ISSN 0974-5904, Vol. 09, No. 05, October, 2016, pp. 2315-2320

2319

3. 3D simulation on urban waterlogging and seeper

process

According to the calculated road submerged area and

depth, 3D visualization was performed in 3D scenes.

Then, all PlaneGeometrys were judged. If the

submerged mark is FLood[i][j] of

PlaneGeometry[i][j] was ‘TRUE’, the submerged

water surface was added to the grid surface; else, the

submerged water surface was not added. After all the

judgment finished, the submerged area was acquired

and the browsing effect of the submerged area in the

browser is shown in Fig. 6.

Then, the submerged range and depth within the

whole rainfall time series were simulated. By adding

the dynamic water surface to the 3D scene, the

waterlogging depth and area within the corresponding

time series were acquired, i.e., the submerged

condition of the whole rainfall process was simulated.

Fig. 7 shows the dynamic simulation results of rainfall

and flood process according to the calculation results

Fig.6 Submerging calculation renderings

Fig.7 Dynamic simulation of rainfall and flood

process

4. Conclusions

It is of great significance to conduct 3D dynamic

simulations on urban waterlogging processes and

analyze urban seeper conditions under different

rainstorm scenes for urban disaster prevention and

reduction, disaster evaluation, post-disaster

reconstruction and economic and social

developments. WebGL technical standard can use the

no-rendering plug-ins to create the web pages with

complex 3D structures and even design 3D web

games. Owing to its several advantages such as cross-

language and cross-platform, WebGL can make one-

development and multiple-use possible, get easy

access to and interact with the fantastic 3D scenes on

both PCs and mobiles only with the aid of Web

browser. WebGL technique can provide technological

base for 3D visualization of the mass data concerning

urban waterlogging using the network client. Three.js

is one of the best graphics library and can create

simple 3D scenes, cartoons and even interactive

games. Three.js supports WebGL, SVG, Canvas and

CSS3D rendering. This article used WebGL’s open

source library Three.js to create 3D scenes, conducted

3D surface drawing and texture mapping on road

DEM, completed 3D scene rendering and finally

carried out 3D dynamic simulations on urban

waterlogging and seeper process.

Acknowledgements

This work was supported by the Henan Fundamental

and Frontier Technology Research, Project (Grand

No. 152300410044), Key University Science

Research Project of Henan Province((Grand No.

16A420005). Our gratitude is also extended to

reviewers for their efforts in reviewing the manuscript

and their very encouraging, insightful and

constructive comments.

References

[1] YANU Xiaodong, HU Litang, TANG Zhonghua.

3D modeling and visualization of stratum based

on Java/Java 3D [J]. Acta Geodaetica ET

Cartographical Sinica, 2006, 35(2):166-169.

[2] LV Zhihan, FEND Shengzhong. Multi-

dimensional WebGIS based 3D interactive

network virtual community [J]. Journal of System

Simulation, 2013, 25(9):2109-2114.

[3] CHEN Ge, QI Yongyang, CHEN Yong, MA

Chunyong. Design and Implementation of Urban

Simulation Oriented VRGIS [J]. Journal of

System Simulation (S1004-731X), 2009, 21(2):

457-460.

[4] LIN Hui, GONG Jianhua. On Virtual Geographic

Environments[J]. Acta Geodaetica ET

Cartographical Sinica, 2002, 31(1):1-7.

[5] HAN Yi. The new development trend in Web3D

and Web visualization-taking WebGL and O3D

as example [J]. Science Mosaic, 2010(5):81-86.

[6] MA Ruina, LV Zhihan, HAN Yong, CHEN Ge.

Research and Implementation of Geocoding

Searching and Lambert Projection

Transformation Based on WebGIS [J].Geospatial

Information, 2009, 7(5):31-34.

ZHANG CHENGCA, ZHANG LINGJIE AND ZHU ZULE

International Journal of Earth Sciences and Engineering

ISSN 0974-5904, Vol. 09, No. 05, October, 2016, pp. 2315-2320

2320

[7] Nobuyuki Bannai, Robert B Fisher, Alexander

Agathos. Multiple color texture map fusion for

3D models [J]. Pattern Recognition Letters

(S0167-8655), 2007, 28(6): 748-758.

[8] A.H. Elliott, S.A. Trowsdale. A review of models

for low impact urban stormwater drainage[J].

Environmental Modelling and Software, 2006,

22(3): 394-405.

[9] Christopher Zoppou. Review of urban storm

water models [J]. Environmental Modelling and

Stoftware, 2001, 16(3): 195-231.

[10] Alun Evans, Marco Romeo, Arash Bahrehmand,

et al .3D graphics on the web: A survey [J].

Computers Graphics-UK, 2014, 41: 43-61.

[11] Dean Jackson, Jeff Gilbert. WebGL 2

Specification Editoe’s Draft 2 February

2016.https://www.khronos.org/registry/webgl/spe

cs/latest/2.0/

[12] Kyung-sook Choi, James E. Ball. Parameter

estimation for urban runoff modelling [J]. Urban

Water, 2002(4):31-41.

[13] Michael Bruen, Jianqing Yang. Combined

hydraulic and black-box models for flood

forecasting in urban drainage systems [J]. Journal

of Hydrologic Engineering, ASCE, 2006,

11(6):589-596.

[14] Sing Hariom, Garg R.D. Web 3D GIS

Application for Flood Simulation and Querying

Through Open Source Technology [J]. Journal of

the Indian Society of Remote Senaing, 2016,

44(4):485-494.

[15] Hunter Jane, Brooking Charles, Reading Lucy,

Vink Sue. A Web-based system enabling the

integration, analysis, and 3D sub-surface

visualization of groundwater monitoring data and

geological models [J]. International Journal of

Digital Earth, 2016, 9(2):197-214.

