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Abstract: In this paper, the energy balance technique is used to study the stability of flexible pipe. The pipe flow 

is considered as laminar flow. The outer surface of the pipe is taken as shroud. The different curves are plotted 

for the various flexibility parameters i.e. GVf /2  and fsr  /
., where     is the  viscosity of flexible 

material, and     is viscosity  of fluid and   , V and G are fluid density , centre line velocity of pipe and 

modulus of rigidity.  It is found that the various energy terms are responsible for the stability of flexible pipe 

flow. 
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1. Introduction 
 

The flexible pipe flow is normally found in nature like 

flow of blood through veins, pharmaceutical 

industries etc.  Kramer’s [1, 2, 3, 4] found that 

flexible material reduce the drag on the flat surface 

flow. The flexible pipe flow will remain laminar for 

the longer period due to flexibility of surface.  

Reynolds [5] performed the experiment on the rigid 

pipe flow and observed that the center line modes are 

responsible for making the flow unstable.  The 

induced disturbances make the flow unstable 

(turbulent). 
 

Davey and Drazin [6] did the numerical study on the 

rigid pipe flow and found that flow of rigid pipe is 

stable at all Reynolds numbers R and all axial wave 

numbers  for all to infinitesimal axisymmetric 

disturbances.  Garg and Rouleau [7] and Salwen and 

Grosch [8] also confirmed same result by numerical 

method. They also observed that centerline modes are 

more unstable as compared to wall modes. 
 

Hamadiche and Gad-el-Hak [9] did the numerical 

study on the flexible tube for axisymmetric and non-

axisymmetric disturbances for the normal plus 

tangential compliance (N+T) problem. They found 

that flexile pipe is unstable at all Reynolds number R 

i.e. low R, medium  R and high R. Gajjar, Gibson and 

Sen [10], and particularly Gibson [11] studied the 

only normal compliance (N). In present paper, normal 

plus tangential compliance (N+T) problem and 

normal compliance (N) are analyzed for flexible pipe 

flow for 3D disturbances 

 

 
 

Figure 1:  Configuration of flexible pipe flow 
 

2. Formulation 
 

Figure 1 shows the configuration of the flexible pipe 

flow. The interface of fluid and visco-elastic is 

considered at r = 1 and external surface of rigid pipe 

at r = H. The non-axisymmetric (3-D) disturbances 

are induced in the fluid flow field.  The velocity 

components (u, v & w) for fluid-side and visco elastic 

material displacement components (̂ , ̂  and ̂  ) 

are shown in figure 1 for all three directions ( x , r and 

 ).  All parameters are normalized with radius r and 

centre line velocity V. is /*

oVrR  , where, R is 

Reynolds number,  is the kinematic viscosity of 

fluid. In this paper flexible pipe flow is considered for 

laminar flow condition. 
 

2.1 The fluid side energy equations 
 

The derivations of various energy terms can be seen 

from any standard energy analysis paper. The energy 

equations of non-axisymmetric disturbances modes, 

for the fluid-side, are given as follows: 

543212 BBIIIci                     (1)  

Where, 54321 ,,, BandBIII are as follows: 
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2.2 The flexible side energy equations 
 

The flexible side energy equations can be written in 

terms of displacements of flexible material.  
 

6543212 DDDJJJci   
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2.3 Boundary conditions 
 

The boundary conditions for the combined fluid-solid 

problem, for different azimuthal wave numbers n, are 

given as below. 
 

2.3.1 Centerline of the pipe, 0r : 

for n = 1: 

0)0(,0,0)0(  viwvu (or)

)0)0( w .                                                   (3)   

for n > 1: 

  0)0(,0)0(,0)0(  wvu .            (4)                   

2.3.2 Outer rigid surface 

Outer surface of the visco-elastic pipe is at   r = H. 

The boundary conditions are given as follows 

0)(,0)(,0)(  HHH          (5)            

2.3.3Fluid and the visco-elastic interface (r = 1) 

The boundary conditions at the interface are 

continuity of velocities and continuity of stresses. 
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   (6a, b, c) 

Particularly, eq. (6a,b,c) is the tangential no-slip 

boundary condition. The above interface velocities 

can also be written as follows: 

wwww uuci   , ww vci   ,           

ww wci   .                                             (7a, b, c) 

The stress matching conditions at the interface are 

given as follows: 

rrrr   ,  rxrx   ,      rr  ;           (8a,b,c)                
 

3. Finite Difference Technique 
 

The finite difference technique is used to solve the 

differential equations for the fluid and the flexible 

material.. 

The differential equations may be written as given 

below: 

][][][ IJIJ PA  , )22..(,4,3,2,1,  NJI       (9) 

Here, N is the number of intervals in the above 

equation. ][ IJA  is the coefficient matrix. The finite 

difference method is solved by computer 

programming in FORTRAN and Programs are 

compiled by Lahey Fijtsu complier.   
 

4. Results 
 

The different energy curves are plotted for the various 

parameters for normal (N) and normal plus tangential 

(N+T) problem.  The energy balance method has been 

used to analyze fluid-solid stability problem. 
 

4.1 The N+T problems 
 

The stability of normal plus tangential compliance 

problem (N+T) for the non-axisymmetric mode has 

been studied here. 

 

Figure 2: The variation of different energy terms for 

the N+T for the fluid-side. H =2.0, µr = 0.0,  = 8, α 

= 2.076 
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Figure 3: The variation of different energy terms for 

the N+T, for the solid-side. H =2.0, µr = 0.0,  = 8, α 

= 2.076 

Figures 2 and 3 show the variation of the different 

energy terms respectively for the fluid-side and the 

solid-side.  These curves are drawn different Reynolds 

number R versus different energy terms for the fluid-

side and the solid-side both. These curves correspond 

to the nose region of the neutral curve for the non-

axisymmetric modes. It is seen in figure 2 that 

production term I2 is positive everywhere in the range, 

but relatively small in magnitude. The terms I3 and B5 

are negative everywhere, both being large, with I3 

larger in size than B5. The tractive work term B4 is 

positive everywhere and very large in magnitude. So, 

the tern B4 is the main source of energy in the fluid-

side. Basically, therefore, B4 is balanced by I3 + B5 or   

(B4  I3 + B5 ). 
 

Next in figure 4, it is seen that solid-side energy terms 

corresponding to the case above in figure 3. It is 

observed that the term J2 is positive in stable region 

and negative in the unstable region and is large in 

magnitude. The terms J3 and D6 are zero, since µr =0. 

The tractive work term D4 is positive in the unstable 

region and negative in the stable region and is the 

largest term. The D5 term is positive in the stable 

region and negative in the unstable region and is 

negligibly small. Basically, D4 is balanced by J2 +D5 

or (D4  J2 + D5). 

 

Figure 4: The variation of different energy terms for 

the N+T for the fluid-side. H =2.0, µr = 0.1,  = 8, α 

= 2.632 

 

 

Figure 5: The variation of different energy terms for 

the N+T, n = 3 mode for the solid-side. H =2.0, µr = 

0.1,  = 8, α = 2.632 
 

Next in figures 4 and 5, the energy terms for the fluid-

side and the solid-side respectively for µr = 0.1 were 

studued. The parameters are N+T, H =2.0, µr = 0.1,  

= 8, α = 2.632. In figure 4 for the fluid-side, it is 

found that the production term I2 is positive 

everywhere in the range and is not very large. The 

term I3 is negative everywhere and is large in 

magnitude. The B4 term is positive everywhere and 

large. This term B4 is the main source of energy in the 

fluid-side. Also the wall normal work term B5 is 

negative everywhere and is not very large. This, 

amongst the two source terms, B4 is larger than I2, and 

amongst the two sink terms, J3 is larger than B5. Here, 

B4 + I2 is balanced by I3 + B5 or (B4 + I2  I3 + B5). 
 

Figure 5 shows the variation of the different energy 

terms for the solid-side and parameters are same as 

given above in the fluid-side energy distribution in 

figure 4.  Here it is observed that J2 and D5 are 

negligible everywhere. The term J3 is negative 

everywhere and large in magnitude. The work term D4 

is positive everywhere, is large, and is the main 

source of energy in the solid-side. The term D6 is 

negative everywhere and of negligible size. Basically, 

D4 is offset by J3 or   (D4  J3). 
 

3.2 The N problems for the visco-elastic wall 
 

In this sub-section, Normal compliance (N) problem 

for non-axisymmetric disturbances has only studied. 

 

Figure 6: The variation of different energy terms for 

the N, mode for the fluid-side. H =2.0, µr = 0.0,  = 

8, R = 500  
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Figure 7: The variation of different energy terms for 

the N, mode for the solid-side. H =2.0, µr = 0.0,  = 

8, R = 500 
 

Normal compliance (N) problem has been studied. 

Figures 6 and 7 showed the variation of different 

energy terms, for the fluid-side, and solid-side 

respectively.The parameters studied are N,  µr = 0.0,  

= 8 and R = 500. It is seen that the production term I2 

is positive everywhere and large is in magnitude. 

Thus I2 is the main source of energy in the fluid-side. 

The dissipation term I3 is negative everywhere and is 

also large. The tractive work term B4 is positive in the 

stable region and negative in the unstable region and 

is small in magnitude as compared to I2. The term B5 

is negative everywhere and is small in magnitude. 

Basically therefore I2 is balanced by I3. 
 

In figure 7, the solid-side energy terms were 

considered corresponding to the case above in figure 

6. It is observed that the term J2 is positive in the 

unstable region and negative in the stable region and 

is reasonably large. The terms J3 and D6 are zero, 

since, µr = 0. The attractive work term D4 is positive 

in the unstable region and negative in the stable 

region and is large. The term D5 is negligible. 

Basically therefore D4 is offset by J2. 
 

4. Conclusions  
 

From the above discussions, the following 

conclusions were drawn as follows: 

(i)  The neutral curves for N+T, modes are again 

similar to those for axi- symmetric modes.  However 

the energy balance is more like axi- symmetric 

modes. Basically B4 + I2 is offset by I3 + B5 both for 

µr = 0 and µr ≠ 0.  

(ii) For the N problem, modes, the general pattern is 

regular, with I2 +B4 is offset by I3 + B5. Also D4 is 

offset by J2 when µr = 0. 

(iii) The present results based on the energy method 

provide much deeper insight into the relevant 

mechanism involved. It can been seen for which class 

of modes, I2 is the dominant production term, and for 

which other class of modes B4 term is the dominant 

production term. The energy method therefore 

provides alternative tools of analysis giving the 

further insight into the exchange mechanism taking 

place both in the fluid-side and in the solid-side.  
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