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Abstract: The support of underground structures must be appropriately designed. New analytical solutions for a 

deep tunnel with liner in isotropic geomaterial have been obtained for a hydrostatic-pressure condition by using 

the complex potential theory proposed by Muskhelishvili. The construction sequence of the tunnel is properly 

modeled in the analytical solution. The sensitive analyses indicate that the flexible support is favorable to 

decrease the support pressure and the installation of the liner must be well-timed towards the different situations. 

And that the liner rigidity is increased and the liner is installed as early as possible, which both are advantageous 

to reduce the surrounding geomaterial deformation. The analyses also show that the structure has a strong 

dependency on the liner thickness. The present solutions contain previously known results as the special cases. 
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1. Introduction 
 

Tunnel is a main underground structure and widely 

used for transportation transfer, water passage, and 

other purposes such as electricity or communication 

cable installation. With the development and upgrade 

of infrastructures, tunnel construction is increasing all 

over the world and tunnel engineer is more aware of 

the importance of the safety and economics of tunnel 

construction. The subject of geomaterial-liner 

interaction has been studied by numerous researchers 

[1-5]. A common feature to all the openings is that the 

release of pre-existing stress upon excavation of the 

opening will cause the soil or rock to deform 

elastically at the very least. An understanding of the 

manner in which the soil and rock around a tunnel 

deform elastically due to changes in stress is quite 

important for underground engineering problems. In 

fact, the accurate prediction of the in situ stress field 

and deformability moduli through back-analysis of 

tunnel convergence measurements and of the ‘Ground 

Reaction Curve’ is essential to the proper design of 

support elements for tunnels [6]. 
 

The availability of many accurate and easy to use 

finite element, finite difference, or boundary element 

computer codes makes easy the stress-deformation 

analysis of underground excavations. However, 

Carranza-Torres and Fairhurst [7] note explicitly in 

their paper: ‘‘...Although the complex geometries of 

many geotechnical design problems dictate the use of 

numerical modeling to provide more realistic results 

than those from classical analytical solutions, the 

insight into the general nature of the solution 

(influence of the variables involved etc.) that can be 

gained from the classical solution is an important 

attribute that should not be overlooked. Some degree 

of simplification is always needed in formulating a 

design analysis and it is essential that the design 

engineer be able to assess the general correctness of a 

numerical analysis wherever possible. The closed-

form results provide a valuable means of making this 

assessment…’’. 
 

As an important analytical method, the complex 

variable theory [8] has been widely used to analyze 

the underground problem. A closed-form plane strain 

solution for stresses and displacements around tunnels 

of semi-circular or ‘‘D’’ cross-section and a semi-

analytical elastic stress-displacement solution for 

notched circular openings in rocks based on the 

complex potential functions and conformal mapping 

representation are presented [9]. 
 

The paper attempts to present a close-form elastic 

solution for a circular lined tunnel under the 

hydrostatic-pressure condition and uniformly internal 

pressure (Fig.1). The work concentrates on the 

analyses of the effects of the relative rigidity and 

thickness of the liner and the so-called elastic 

deformation rate of the surrounding geomaterial on 

the stress-displacement field for various combinations 

of the mechanical and geometric parameters. In all the 

analyses the following assumptions have been made: 

(1) the geomaterial and the liner remain elastic 

materials; (2) the cross-section of the tunnel is 

circular; (3) plane strain conditions apply at any cross-

section of the tunnel; (4) deep tunnel. 
 

2. Analytical Solution 
 

The elastic problem to be considered is that of a semi-

infinite geomaterial containing a deep circular liner 

tunnel subjected to uniformly internal pressure p and 

in situ stress 0 , as shown in Fig.1. It is assumed that 

the geomaterial and the liner are perfect bonded. The 
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origin of the x- and y-axes is taken at the center of the 

tunnel. The inner and outer radii of liner are denoted 

by a and t, respectively, and the regions occupied by 

the geomaterial and the liner by index 1 and 2. In 

addition, it is assumed that the radii of the opening 

before the tunnel is excavated, after the opening 

elastic deformation finishes and before the liner is 

installed, will be referred to t  , t  and t  , 

respectively. The construction sequence of the tunnel 

is modeled with regard to Fig.2. 
 

 
 

Figure1: Circular lined tunnel under uniformly 

internal pressure and in situ stress. 
 

 
 

Figure 2: Model for tunnel construction sequence. 
 

Then, we define 
 

  ttt                                          (1) 
 

As the relative radius misfit between geomaterial and 

liner. This misfit is assumed of the order of admissible 

strains in linear elasticity. 
 

Based on Kirsch’s elasticity solution [10], t  is 

expressed as follows 
 

 101 4)1(1 Gtt                      (2) 
 

The case of 0  means that the liner is installed 

after the elastic deformation finishes, and max   

means that the region tr   in geomaterial is 

replaced by the liner. Thus, max  are written in the 

following form 
 

1

01
max

4

)1(

G





                                     (3) 

 

Substituting (3) into (2) yields the following relation 
 

tt  )1( max                                          (4) 
 

Next, the elastic deformation rate of the surrounding 

geomaterial is defined by 
 

%100





tt

tt
                                         (5) 

 

Taking advantage of Eq.(4), δ can be rewritten 
 

%100)1(
1

max







t

t


                               (6) 

 

Inserting Eqs.(3),(4) and (6) into Eq.(1) gives 
 

max

max

1

)1(









                                                (7) 

 

We also define the dimensionless liner rigidity as 

follows 
 

1

2

G

G
Γ                                                                 (8) 

 

For the plane elastic problem shown in Fig.1, all the 

physical quantities are given in terms of two complex 

potentials )(z , )(z and their derivatives. 
 

Components of stresses and displacement in polar 

coordinate are written as follows 
 

])()([2 zzr 
                           (9) 

)]()([e2i2 i2 zzzrr  


   (10) 

  ])()()([e)i(2 i zzzzuuG r 


 

(An arbitrary constant)                                         (11) 
 

Furthermore, components of resultant force is 

expressed as 
 

 ])()()([ii zzzzFF yx   

(An arbitrary constant)                                       (12) 
 

Wherein the overbar represents the complex 

conjugate, yxz i , 1i   is the imaginary 

unit.  G is the shear modulus and κ is defined by 

Poisson’s ratio γ as 
 















strain) plane(43

stress) plane(
1

3






                            (13) 

 

Constant terms in Eqs.(11) and (12) depend on the 

starting points from which xF , yF  and u , v  are 

measured, but they are nonessential in the analysis. 
 

The stress complex potentials )(1 z , )(1 z for 

domain 1 and )(2 z , )(2 z  for domain 2 may be 

written as the following Laurent series. 
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Note that symmetry dictates that all of the even power 

terms are missing and that the coefficients nK2 , 

nF2 , nL2 , nH 2 , nW2 , nV2 , nQ2  and nR2  are real 

in the above expressions. 
 

Considering that the stress field in liner is caused by 

the elastic misfit between the liner and the 

surrounding geomaterial as well as the internal 

pressure, moreover, the above expressions must 

satisfy the continuity conditions for the stress and 

displacement along the liner boundary, that is, along 
ietz   and for any   
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And along 
ieaz   

 

prr  22 i   az                           (17) 

 

Substituting Eqs.(14) and (15) into Eqs.(16) and (17), 

in conjunction with the stress state at infinity, the 

complex potentials in the liner may be expressed as 
 

zWz 02 )(  ；
1

02 )(  zRz                    (18) 
 

Where 
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Compared with the stress field in liner, the stress field 

in surrounding geomaterial is produced by three 

sources, i.e., the misfit between the liner and the 

surrounding geomaterial, the internal pressure and in 

situ stress. Thus, the complex potentials in the 

surrounding geomaterial may be derived as follows 
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Where 
 

2

0
0


K                                                 (22) 

2

012

2

22

2

12

2

22

2

0

)1()21(5.0

22)12(

]
)1(2)21(

22)12(

2
[

2

t
tΓtaΓ

tGptΓ

a
tΓtaΓ

tGptΓpt
H



























  (23) 

 

Substituting Eqs.(18) and (21) into Eqs.(9)-(11) yields 

the stress and displacement in domains 1 and 2, 

respectively. 
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Where f=f(r), which is a displacement function in 

geomaterial relative to the part deformation of the 

surrounding geomaterial before the liner installation. 

For tr   
 

trttrff  )(0              (26) 
 

Consider the pre-existing displacement in geomaterial 

before excavation due to the in situ stress field 
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Referring to Eqs.(24) and (25), the displacement in 

liner and geomaterial due to exaction may be 

rewritten as 
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Let  r=t in Eqs.(24) and (28), the support pressure pi 

and the surrounding geomaterial deformation u  may 

be obtained as follows 
 

2

002  tHKpi                                (30) 

0
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wherein, f0 may be yielded by measurement, thus, it is 

essential to observe the variation of u  
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1

001 GtHfuu r
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Taking ε=εmax in the above expressions, the solution in 

the paper is agreement with the result obtained by 

Ref.[11]. 
 

3. Sensitivity Analyses 
 

The present problem may be treated as a plane strain 

problem. Here, we assume 3.021   , 

01.0 p  and 
4

101 10)4(])1[(  G . 
 

3.1. Variations of support pressure with elastic 

deformation rate and dimensionless liner thickness 
 

 
 

Figure 3: Variations of support pressure with elastic 

deformation rate and dimensionless liner thickness for 

Г=0.1. 
 

 
 

Figure 4: Variations of support pressure with elastic 

deformation rate and dimensionless liner thickness for 

Г=10. 
 

For soft liner, it is found from Fig.3 that the support 

pressure monotonically increases with increasing liner 

thickness when the elastic deformation rate   is in 

the range of %50 . As for %80 , a reverse 

trend is observed. For hard liner, the variation of pi 

with the elastic deformation rate and the liner 

thickness is plotted in Fig.4. From this figure, we 

observe that the general trend is that the support 

pressure monotonically decreases with increasing 

liner thickness. Moreover, the trend becomes gentle 

with increasing elastic deformation rate. In this case, 

the increment of the liner thickness is unfavorable to 

decrease the support pressure. It is seen from Figs.3 

and 4 that the liner is installed after the surrounding 

geomaterial partially deform, which may reduce the 

support pressure. 
 

3.2. Variations of support pressure with elastic 

deformation rate and dimensionless liner rigidity 
 

 
 

Figure 5: Variations of support pressure with elastic 

deformation rate and dimensionless liner rigidity for 

t/a=1.05. 

 

Figure 5 shows the variation of pi versus the elastic 

deformation rate and the dimensionless liner rigidity 

for a fixed-thickness liner. It is observed that the 

support pressure monotonically decreases with 

increasing elastic deformation rate. In addition, the 

increment of the liner rigidity may increase the 

support pressure in the rough range of %90 . As 

for %90 , the reverse tendency takes place. 

Thus, the elastic deformation of the surrounding 

geomaterial partially happens before the liner is 

installed and the flexible support is adopted, which 

both are appropriate to decrease the support pressure. 
 

3.3. Variations of support pressure with 

dimensionless liner thickness and rigidity 
 

Figs.6 and 7 illustrates the variation of the support 

pressure with respect to dimensionless liner thickness 

and rigidity. For case of δ=0%, the support pressure 

increases with the increment of liner thickness and 

rigidity. When δ=100%, compared with δ=0%, the 

trend evolves to the contrary side. 
 

 
 

Figure 6: Variations of support pressure with 

dimensionless liner thickness and rigidity for δ=0%. 
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Figure 7: Variations of support pressure with 

dimensionless liner thickness and rigidity for 

δ=100%. 
 

4. Conclusions 
 

By using the complex potential theory proposed by 

Muskhelishvili, the construction sequence of the 

tunnel is appropriately modeled. The complex stress 

potentials are assumed to be in the form of Laurent 

series expansions, and the unknown coefficients are 

determined by the boundary conditions and the stress 

state at infinity. Finally, the close-form solutions for 

the stress and displacement field are explicitly 

derived. The sensitive analyses indicate that the 

flexible support is favorable to decrease the support 

pressure. In addition, the installation of the liner must 

be well-timed towards the different situations. The 

liner rigidity is increased and the liner is installed as 

early as possible, which both are advantageous to 

reduce the surrounding geomaterial deformation. The 

analyses also show that the structure has a strong 

dependency on the liner thickness. The present 

solutions contain previously known results as the 

special cases. 
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