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Abstract: Asymmetric rectangular CFST beams with unequal wall thickness subjected to pure bending in the 

elastic plastic stage are investigated in the paper. The variation of the neutral axis in the elastic plastic stage and 

the condition of the maximum of the ultimate bending moment are given. A case study of ten CFST beams with 

different cross sections is also carried out. From the theoretical analysis and the case study, it is determined that 

for an asymmetric cross section, the neutral axis will move and rotate nonlinearly with the plastic development 

of the cross section, and the translation and rotation of the neutral axis will undergo a fast-slow-fast process. 
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1. Introduction 
 

Concrete-filled steel tubular (CFST) columns have 

been widely used in the high-rise buildings nowadays, 

which have a lot of advantages compared with 

conventional reinforced concrete and steel tubular 

columns [1-6]. Circle, square and rectangle CFST 

columns are commonly used. Circle CFST columns 

have the best confining effect. However, square and 

rectangular CFST columns are easier to construct 

nodes, and have better bending performance than 

circle CFST columns.  
 

A lot of research achievements on CFST columns 

have been obtained [7-11]. In general, the wall 

thickness of steel tubes is uniform, which is beneficial 

to the processing of steel tubes. The existing studies 

mainly focus on CFST columns with uniform wall 

thickness, and there is almost no research on 

rectangular CFST columns with unequal wall 

thickness. The uniform wall thickness is not 

conducive to make full use of materials, and the 

unequal wall thickness is a good choice for the cross 

section optimization. The wall thickness of the steel 

tubes used in the engineering practice may not be 

completely equal. So it is very necessary to investigate 

the mechanical properties of asymmetric rectangular 

CFST columns with unequal wall thickness, which 

can be easily degenerated into CFST columns with 

uniform wall thickness. 
 

It is only found that Lu et al. [12] experimental 

studied the mechanical behavior of the uniaxial 

symmetric rectangular CFST beams with unequal wall 

thickness subjected to pure bending, of which the side 

wall thickness was equal. Three specimens were tested 

and the ultimate bending strength was compared with 

the predicted value based on the current design codes. 

Meanwhile, a FEM model was developed to 

investigate the effect of the wall thickness ratio of the 

steel tube on the ultimate bending strength. They 

concluded that the ultimate flexural strength of the 

uniaxial symmetric rectangular CFST beam with 

unequal wall thickness is superior to that of a CFST 

beam with uniform wall thickness. 
 

The objective of this investigation is threefold: first, to 

investigate the variation of the neutral axis of 

asymmetric rectangular CFST beams with unequal 

wall thickness subjected to pure bending in the elastic 

plastic stage; second, to study the condition that 

should be met when the ultimate bending moment of 

asymmetric rectangular CFST beams with unequal 

wall thickness subjected to pure bending reaches its 

maximum; third, to carry out the case study which 

includes ten CFST beams with different cross sections 

and compare their bearing capacity. 
 

2. Theoretical analysis of elastic plastic stage: 
 

2.1 Assumptions and constitutive relationships of 

materials: 
 

The following assumptions are set up in the theoretical 

study on the elastic plastic stage of asymmetric 

rectangular CFST beams with unequal wall thickness 

subjected to pure bending:  

 Planar cross section assumption, i.e., the cross 

section remains plane after deformation. 

 Without consideration of the transverse 

interaction between the steel tube and the concrete 

core, each point on the cross section is in the uniaxial 

stress state during the whole loading process. 

 Steel is regarded as an ideal elastic plastic 

material (shown in Figure 1(a)). Confined concrete in 

the compression region is assumed to be ideal elastic 
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plastic, while confined concrete in the tension region 

is considered to be linear elastic before the tensile 

strength of confined concrete (
ctf ) is reached, and 

beyond the tensile strength it will exit the work 

(shown in Figure 1(b)). It is also assumed that 

confined concrete has the same yield strain as steel, 

which will lead to the following equation: 

cc c

sy s

f E
m

f E
                (1) 

Where, 
sE , 

syf , 
cE , and 

ccf  are the elastic modulus 

of steel, the yield stress of steel, the elastic modulus of 

confined concrete, and the compressive strength of 

confined concrete, respectively. m  is the ratio 

coefficient, which is a constant. 

 Tensile stress is assumed to be positive, and 

compressive stress is assumed to be negative. Bending 

moment pointing to the positive direction of the 

coordinate axis is assumed to be positive; conversely, 

negative. 

 As shown in Figure 2, only the asymmetric 

rectangular CFST beam with unequal wall thickness 

subjected to pure bending meeting the condition of the 

neutral axis passing through both the concrete core 

and the side walls of the steel tube is studied in this 

paper. 
 

Based on the third assumption, the stress–strain 

relationship for steel can be expressed as follows: 

        ( )

      ( )

      ( )

sy s sy

s s s sy s sy

sy s sy

f

E

f

 

    

 

 


   
  

               (2) 

in which 
s , 

s , and 
sy  are the longitudinal steel 

stress, longitudinal steel strain, and the yield strain, 

respectively. 

/sy sy sf E                             (3) 

The stress–strain relationship for confined concrete 

can be expressed as below: 

0            ( )

       ( )

        ( )

c ct

c c c cc c ct

cc c cc

E

f

 
    

 


   
  

          (4) 

where 
c , 

c , 
ct  and 

cc  are the longitudinal stress 

of confined concrete, longitudinal strain of confined 

concrete, the tensile ultimate strain of confined 

concrete, and the compressive yield strain of confined 

concrete, respectively. 

/ct ct cf E                             (5) 

/cc cc cf E                             (6) 

The tensile strength of confined concrete is expressed 

as Equation (7), which is much lower than its 

compressive strength. 

0.6ct ccf f                                              (7) 

 
 

(a) Steel 

 
(b) Confined concrete 

 

Figure 1: Stress–strain curves for steel and confined 

concrete 
 

2.2 Bending moment and neutral axis in elastic 

plastic stage: 
 

The cross section of asymmetric rectangular CFST 

beams with unequal wall thickness subjected to pure 

bending in the elastic plastic stage is shown in Figure 

2. Based on the fourth assumption, the position of the 

neutral axis (mn) can be assumed as shown in Figure 

2. In order to facilitate the calculation, the whole cross 

section is divided into thirteen small areas and each 

area is numbered. The area numbers and the 

boundaries between the elastic zone and the plastic 

zone are shown in Figure 2. The coordinate system is 

also established as shown in Figure 2. 
 

The resultant force (
iN ), and the position vector of 

the action point of the resultant force (
ir ) on each 

small area are calculated and shown in Table 1. Based 

on Table 1 and taking the coordinate origin as the 

simplified center, the principal vector ( N ) and the 

principal moment vector ( M ) of the resultant force of 

the cross section can be obtained through the 

following two equations: 
13

1

( ,0,0)i

i

N N N


                           (8) 

13

1

(0, , )i i y z

i

M r N M M


              (9) 
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Figure 2: Cross section of asymmetric rectangular 

CFST beams 

Due to pure bending, the principal vector must be a 

zero vector. By solving the equation of 0N  , the y 

coordinate of point n (
ny ) on the neutral axis can be 

expressed as below: 

1

4

3 4 3

1
(25 (2 ( 2 )

25 ( 4 )

       2 ( ) (4 ) )

        (9 25 ) )

n sy y

sy

m

sy

f b mt e
f mb t

H t t t

m

y

bm y

f b




 





      (10) 

in which 
my  is the y coordinate of point m on the 

neutral axis, and   is half of the width of the steel 

elastic zone. 
 

The direction angle of the internal bending moment 

vector (  ) can be calculated as follows: 

arctan z

y

M

M
               (11) 

The neutral axis vector (
mnr ) is expressed as below: 

3 4(0, , )
2

mn n m

t t
r y y B


             (12) 

The direction angle of the neutral axis vector ( ) is 

calculated as follows: 

arctan
2( )n m

B b

y y
 



        (13) 

The angle between the internal bending moment 

vector and the neutral axis vector ( ) is calculated as 

below: 

arccos
 

mn

mn

M r

M r
              (14) 

Where M  and 
mnr  are the norms of the vectors of M  

and 
mnr . The angles of  ,   and   meet the 

following equation: 

                  (15) 

Based on Equation (10), all the variables can be 

expressed as the functions of 
my  and  . The internal 

bending moment obviously depends on the external 

bending moment of which the direction is known. So 

  is determined through the equilibrium equation 

between the internal and external bending moments, 

which means that   can be regarded as a constant 

( const  ). By solving the equation of 

tanz yM M  , 
my  can be expressed as the function 

of  . Then all the variables eventually become the 

functions of  . Through continuously reducing the 

value of   from / 2h  to zero, a series of the 

corresponding values of the variables of 
my , 

ny , M , 

mnr ,   and   can be obtained. The flow chart of the 

whole procedure is shown in Figure 3. 
 

2.3 Ultimate bending moment and neutral axis in 

plastic stage: 
 

The variable of   represents the plastic development 

of the cross section. When   is set to zero, the cross 

section will become completely plastic, and the 

bending moment will reach its ultimate bending 

moment (
uM ). The ultimate bending moment relies 

on the direction of the external moment, which means 

that the ultimate bending moment varies with the 

angle of  . To investigate the maximum of the 

ultimate bending moment (
maxuM ), the angle of   is 

no longer regarded as a constant. The program flow 

chart is shown in Figure 4. As displayed in Figure 4, 

all the variables of 
ny , 

uM , 
mnr ,  ,   and   can be 

expressed the functions of 
my . Through continuously 

increasing the value of 
my  from 

1t  to 
2H t , a series 

of the corresponding values of the variables of 
ny , 

uM , 
mnr ,  ,   and   can be obtained. 

The maximum of the ultimate bending moment can 

be got by solving the following equation: 

d
0

d

u

m

M

y
                     (16) 

Where 
uM  is the norm of the vector of 

uM . By 

introducing the solution of Equation (16) into the 

other variables, the maximum of the ultimate bending 

moment and its corresponding values of the variables 

of 
ny , 

mnr ,  ,   and   will be obtained. 
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Figure 3: Program flow chart of elastic plastic stage 

Begin 

Input B, H, t1, t2, t3, t4, 

Calculate 
my , 

ny  by solving 
0

tanz y

N

M M 


 
 

Calculate 
mnr ,  , 

iN , 
ir  (i=1,2,…,13) 

Calculate N , M  

Calculate   

Recalculate 
mnr ,  , M ,   

Set 
1 2( ) / 2H t t     

0 

Calculate 
my , 

ny  

1 2,m nt y y H t  

Y 

Calculate 
mnr ,  , M ,   

Set 1    

Output  , 
my , 

ny , 
mnr ,  , M ,  

End 

Y 

N 

N 
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Figure 4: Program flow chart of plastic stage 
 

Table 1: Resultant force and its action point of each sub-area of the cross section 
 

Area No. 
iN  

ir  

1 
3

( ,0,0)
2

syf t
  

2
(0, ,0)

3
my


  

2 1 3( ( ) ,0,0)sy mf y t t    1(0, ,0)
2

my t 
 

3 1( ,0,0)syf Bt  31(0, , )
2 2

B tt 
 

4 1 4( ( ) ,0,0)sy nf y t t    1 3 4(0, , )
2 2

ny t t t
B

  
  

5 
4

( ,0,0)
2

syf t
  

3 42
(0, , )

3 2
n

t t
y B

 
   

Begin 

Input B, H, t1, t2, t3, t4, 

0  

Calculate 
ny  by solving 0N   

Calculate 
mnr ,  , 

iN , 
ir  (i=1,2,…,13) 

Calculate N , 
uM ,   

Calculate   

Recalculate 
mnr ,  , 

uM ,  ,   

Set 
1my t  

2my H t 

Calculate 
ny  

1 2nt y H t  

Y 

Calculate 
mnr ,  , 

uM ,  ,   

Set 1m my y   

Output 
my , 

ny , 
mnr ,  , 

uM ,  ,  

End 

Y 

N 

N 
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6 1

1
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2
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2 2 2
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1

3 1
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3 3 ( )
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6 3( 2 )

(3 2 3 )
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2 6 3( 2 )
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


     
  

  
 
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7 ( ,0,0)
2

symf b
  42

(0, , )
2 3 2

m ny y B t 
  

8 
3

( ,0,0)
2

syf t
 

2
(0, ,0)

3
my


  

9 2 3( ( ) ,0,0)sy mf H y t t    2(0, ,0)
2

mH y t    

10 2( ,0,0)syf Bt  32(0, , )
2 2

B tt
H


  

11 2 4( ( ) ,0,0)sy nf H y t t    2 3 4(0, , )
2 2

nH y t t t
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4

( ,0,0)
2

syf t
 3 42

(0, , )
3 2

n

t t
y B

 
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13 
9

( ,0,0)
50

b  42
(0, , )

2 25
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y y B t

mf

 
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3. Case study: 
 

3.1 Details of CFST beams: 
 

Because the formula is too complicated, the specific 

analytical formula cannot be obtained. In order to 

intuitively investigate the variation of the neutral axis 

in the elastic plastic stage, and the condition that 

should be met when the ultimate bending moment 

reaches its maximum, case study is carried out. 

As listed in Table 2, ten CFST beams with different 

cross sections are studied, which can be divided into 

five types of cross section as shown in Figure 5. Each 

type of cross section consists of the rectangular cross 

section (R) and the square cross section (S). Section 1 

and 2 are asymmetric cross sections, while section 3, 4 

and 5 are uniaxial or biaxial symmetric cross sections. 

The z direction of section 3, 4 and 5 about the middle 

position of the cross section is symmetric. All the ten 

specimens have the same steel ratio (
sc ) of 0.29. 

 

Table 2: Details of CFST specimens 
 

Section 

No. 

B  

/mm 

H  

/mm 
1t  

/mm 

2t  

/mm 

3t  

/mm 

4t  

/mm 
sc  maxuM

/kNm 

  

/ 
  

/ 
1 R 110.0 150.0 6.0 12.0 3.0 10.0 0.29 54.4 -86.4 93.6 

1 S 128.4 128.4 6.0 12.0 3.0 9.5 0.29 48.5 -85.3 94.6 

2 R 110.0 150.0 3.1 12.0 3.1 12.0 0.29 53.1 -87.5 92.5 

2 S 128.4 128.4 3.3 12.0 3.3 12.0 0.29 47.2 -87.3 92.7 

3 R 110.0 150.0 8.9 18.0 3.0 3.0 0.29 61.2 -90.0 90.0 

3 S 128.4 128.4 7.9 16.0 3.0 3.0 0.29 53.0 -90.0 90.0 

4 R 110.0 150.0 13.5 13.5 3.0 3.0 0.29 56.1 -90.0 90.0 

4 S 128.4 128.4 11.9 11.9 3.0 3.0 0.29 48.1 -90.0 90.0 

5 R 110.0 150.0 7.5 7.5 7.5 7.5 0.29 49.3 -90.0 90.0 

5 S 128.4 128.4 7.6 7.6 7.6 7.6 0.29 43.6 -90.0 90.0 

 
(a) Section 1 

1 2 3 4t t t t    

Asymmetric 

 
(b) Section 2 

1 3 2 4( ) ( )r st t t t t t      

Asymmetric 

 
(c) Section 3 

3 4 1 2( )wt t t t t     

Uniaxial symmetric 
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(d) Section 4 

1 2 3 4( ) ( )s wt t t t t t        Biaxial symmetric 

 
(e) Section 5 

1 2 3 4t t t t t        Biaxial symmetric 

Figure 5: Cross section types 

3.2 Maximum of ultimate bending moment in 

plastic stage: 
 

A program is compiled based on the program flow 

chart shown in Figure 4, and a series of the ultimate 

bending moment and its corresponding values of the 

variables of 
my , 

ny , 
mnr ,  ,   and   of the ten 

specimens are calculated. The relationship of ultimate 

bending moment vs. angle between the ultimate 

bending moment and the neutral axis of each 

specimen is shown in Figure 6. It can be seen that the 

maximum bending moment is achieved when the 

angle of   is equal to  , which means that if the 

ultimate bending moment is collinear with the neutral 

axis, the ultimate bending moment will reach its 

maximum. For such asymmetric cross sections as 

section 1 and section 2, the curves of 
uM -  are also 

asymmetric (seen from Figures 6(a) and 6(b)). Due to 

the symmetry of section 3, 4 and 5, their 
uM -  

curves are symmetric and the line of    is the axis 

of symmetry (seen from Figures 6(c), 6(d) and 6(e)).  

The relationship of ultimate bending moment vs. 

direction angle of the neutral axis of each specimen is 

shown in Figure 7. It can be seen that, except for 

section 1 and 2, the curves of 
uM -  of the other 

sections are symmetric about the line of / 2  . 

The maximum of the ultimate bending moment, its 

direction, and the direction of the neutral axis 

corresponding to 
maxuM  are listed in Table 2. It can 

be found that, for specimen 1R, 1S, 2R and 2S, the 

maximum of the ultimate bending moment will be 

achieved when the direction angles of the neutral axis 

are 93.6º, 94.6º, 92.5º and 92.7º, respectively. 
 

 
(a) Section 1 

 
(b) Section 2 

 
(c) Section 3 

 
(d) Section 4 

 
(e) Section 5 

Figure 6: Relationship of ultimate bending moment vs. angle between the ultimate bending moment and the 

neutral axis 
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(a) Section 1 

 

 
(b) Section 2 

 

 
(c) Section 3 

 

 
(d) Section 4 

 
(e) Section 5 

 

Figure 7: Relationship of ultimate bending moment 

vs. direction angle of the neutral axis 
 

3.3 Neutral axis and bending moment in elastic 

plastic stage: 
 

A program is compiled based on the program flow 

chart shown in Figure 3, and   is set to the value 

listed in Table 2 for each specimen, which is the value 

corresponding to the maximum of the ultimate 

bending moment. A series of the bending moment and 

its corresponding values of the variables of  , 
my , 

ny , 
mnr ,   and   of the ten specimens are 

calculated. The position and direction of the neutral 

axis can be completely determined by the variables of 

my  and  . The relationship of direction angle of the 

neutral axis vs. half of the width of the steel elastic 

zone of each specimen is shown in Figure 8. It can be 

seen that, for an asymmetric cross section, the 

direction angle of the neutral axis in the elastic plastic 

stage is not a constant, which means that the neutral 

axis will rotate nonlinearly with the plastic 

development of the cross section (seen from Figures 

8(a), 8(b), 8(c) and 8(d)). It can also be seen that with 

the varying of  , the rotation of the neutral axis 

undergoes a fast-slow-fast process. For specimen 1R, 

1S, 2R and 2S, the rotation angles of the neutral axis 

with   from / 2h  to zero are 6.5º, 4.8º, 7.7º and 

5.6º. For such symmetric cross sections as section 3,4 

and 5, the direction angle of the neutral axis in the 

elastic plastic stage remain unchanged as a constant of 

/ 2 , which means that the neutral axis will not 

rotate with the plastic development of the cross 

section (seen from Figure 8(e)). 
 

The relationship of y coordinate of point m on the 

neutral axis vs. half of the width of the steel elastic 

zone of each specimen is shown in Figure 9. It can be 

seen that, for an asymmetric cross section, the 

translation of the neutral axis in the elastic plastic 

stage with the plastic development of the cross section 

is approximately linear, but nonlinear in fact (seen 

from Figure 9(a)). The translation of the neutral axis 

with   also undergoes a fast-slow-fast process. For 

such symmetric cross sections as section 3,4 and 5, the 

translation of the neutral axis in the elastic plastic 

stage is absolutely linear (seen from Figure 9(b)). 
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(a) Section 1R 

 
(b) Section 1S 

 
(c) Section 2R 

 
(d) Section 2S 

 
(e) Section 3, 4, 5 

 

Figure 8: Relationship of direction angle of the 

neutral axis vs. half of the width of the steel elastic 

zone 

 

 
(a) Section 1, 2 

 

(b) Section 3, 4, 5 
 

Figure 9: Relationship of y coordinate of point m on 

the neutral axis vs. half of the width of the steel elastic 

zone 
 

3.4 Comparison of Bearing Capacity: 
 

The relationship of bending moment vs. half of the 

width of the steel elastic zone of each specimen is 

shown in Figure 10. When half of the width of the 

steel elastic zone reduces to zero, the bending moment 

will reach its ultimate bending moment (seen from 

Figure 10). Based on Table 2 and Figure 10, it can be 

concluded that section 3R has the best carrying 

capacity and section 5S has the worst carrying 

capacity. Compared with the bearing capacity of 

section 5S which is a square cross section with 

uniform wall thickness, the bearing capacity of section 

1R, 1S, 2R, 2S, 3R, 3S, 4R, 4S and 5R increases by 

24.8%, 11.2%, 21.8%, 8.3%, 40.4%, 21.6%, 28.7%, 

10.3% and 13.1% respectively. Based on Figures 6 

and 7, it can be seen that the bearing capacity of the 

rectangular cross section of each section type is 

superior to the corresponding square cross section, 

which is because that in the case of a certain steel ratio 

more material lying away from the neutral axis will 

lead to better bearing capacity. 
 

 
Figure 10: Relationship of bending moment vs. half of 

the width of the steel elastic zone 
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4. Conclusion: 
 

In this paper, asymmetric rectangular CFST beams 

with unequal wall thickness subjected to pure bending 

in the elastic plastic stage are focused on. The case 

study of ten CFST beams with different cross sections 

is carried out. The following results of the study are 

worth noting: 

(1) For an asymmetric cross section, the neutral 

axis in the elastic plastic stage will move and rotate 

nonlinearly with the plastic development of the cross 

section, and the translation and rotation of the neutral 

axis will undergo a fast-slow-fast process. 

(2) For a symmetric cross section, the neutral axis 

in the elastic plastic stage will only move linearly with 

the plastic development of the cross section, and never 

rotate. 

(3) When the ultimate bending moment is collinear 

with the neutral axis, the ultimate bending moment 

will reach its maximum. 

(4) When the amount of material is fixed, the 

bearing capacity of a CFST beam can be significantly 

improved by the reasonable arrangement of the cross 

section. 
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