





A New Efficient PFC CUK Converter Fed BLDC Motor Drive Using Artificial Neural Network
Subscribe/Renew Journal
In this paper a Power Factor Correction Cuk converter fed Brushless DC Motor Drive using a Artificial Neural Network is used. The Speed of the Brushless dc motor is controlled by varying the output of the DC capacitor. A Diode Bridge Rectifier followed by a Cuk converter is fed into a Brushless DC Motor to attain the maximum Power Factor. Here we are evaluating the three modes of operation in discontinuous mode and choosing the best method to achieve maximum Power Factor and to minimize the Total Harmonic Distortion. We are comparing the conventional PWM scheme to the proposed Artificial neural network. Here simulation results reveal that the ANN controllers are very effective and efficient compared to the PI and Fuzzy controllers, because the steady state error in case of ANN control is less and the stabilization if the system is better in it. Also in the ANN methodology the time taken for computation is less since there is no mathematical model. The performance of the proposed system is simulated in a MATLAB/Simulink environment and a hardware prototype of the proposed drive is developed to validate its performance.
Keywords

Abstract Views: 292

PDF Views: 3