Open Access Open Access  Restricted Access Subscription Access
Open Access Open Access Open Access  Restricted Access Restricted Access Subscription Access

Protection of Database Security VIA Collaborative Inference Detection


Affiliations
1 Computer Science and Engineering at PVP Siddhartha Institute of Technology, Vijayawada, AP., India
2 Department of Computer Science and Engineering, PVP Siddhartha Institute of Technology, Vijayawada, AP., India
3 Computer Science and Engineering at Acharya Nagarjuna university, Guntur, AP., India
     

   Subscribe/Renew Journal


Malicious users can exploit the correlation among data to infer sensitive information from a series of seemingly innocuous data accesses. Thus, we develop an inference violation detection system to protect sensitive data content. Based on data dependency, database schema and semantic knowledge. We constructed a semantic inference model (SIM) that represents the possible inference channels from any attribute to the pre-assigned sensitive attributes. The SIM is then instantiated to a semantic inference graph (SIG) for query-time inference violation detection. For a single user case, when a user poses a query, the detection system will examine his/her past query log and calculate the probability of inferring sensitive information. The query request will be denied if the inference probability exceeds the pre specified threshold.  For multi-user cases, the users may share their query answers to increase the inference probability. Therefore, we develop a model to evaluate collaborative inference based on the query sequences of collaborators and their task-sensitive collaboration levels. Experimental studies reveal that information authoritativeness, communication fidelity and honesty in collaboration are three key factors that affect the level of achievable collaboration. An example is given to illustrate the use of the proposed technique to prevent multiple collaborative users from deriving sensitive information via inference.


Keywords

Knowledge Processing, Privacy Detection Semantic Inference Model, Security.
User
Subscription Login to verify subscription
Notifications
Font Size

Abstract Views: 227

PDF Views: 1




  • Protection of Database Security VIA Collaborative Inference Detection

Abstract Views: 227  |  PDF Views: 1

Authors

P. Kamakshi
Computer Science and Engineering at PVP Siddhartha Institute of Technology, Vijayawada, AP., India
J. Ramadevi
Department of Computer Science and Engineering, PVP Siddhartha Institute of Technology, Vijayawada, AP., India
S. Gopala Krishna Murthy
Computer Science and Engineering at Acharya Nagarjuna university, Guntur, AP., India

Abstract


Malicious users can exploit the correlation among data to infer sensitive information from a series of seemingly innocuous data accesses. Thus, we develop an inference violation detection system to protect sensitive data content. Based on data dependency, database schema and semantic knowledge. We constructed a semantic inference model (SIM) that represents the possible inference channels from any attribute to the pre-assigned sensitive attributes. The SIM is then instantiated to a semantic inference graph (SIG) for query-time inference violation detection. For a single user case, when a user poses a query, the detection system will examine his/her past query log and calculate the probability of inferring sensitive information. The query request will be denied if the inference probability exceeds the pre specified threshold.  For multi-user cases, the users may share their query answers to increase the inference probability. Therefore, we develop a model to evaluate collaborative inference based on the query sequences of collaborators and their task-sensitive collaboration levels. Experimental studies reveal that information authoritativeness, communication fidelity and honesty in collaboration are three key factors that affect the level of achievable collaboration. An example is given to illustrate the use of the proposed technique to prevent multiple collaborative users from deriving sensitive information via inference.


Keywords


Knowledge Processing, Privacy Detection Semantic Inference Model, Security.