Optical Behavior Analysis of Microwave Assisted Combustion Synthesis Copper Ferrite Nanoparticles
Subscribe/Renew Journal
Microwave combustion method was used to synthesize Cu1-xZnxFe2O4 (0 ≤x ≤ 0.5) nanoparticles. The synthesized Zn doped CuFe2O4 nanoparticles were characterized by techniques such as XRD (X-ray diffraction), HR-SEM (High resolution scanning electron microscopy), DRS-UV (visible diffuse reflectance spectroscopy), PL (photoluminescence) and FT-IR (Fourier transform IR spectroscopy). XRD (X-ray diffraction) and FT-IR results in the formation of Cu1-xZnxFe2O4 (0 ≤ x ≤ 0.5) nanoparticle. The crystallite size and lattice parameter were determined as 15 -19 nm and 8.319 -8.400 Å respectively. HR-SEM revealed the presence of agglomerated spherical shaped particles in Cu1-xZnxFe2O4.Elemental mapping of pure and Zn doped CuFe2O4 is done using energy dispersive X-ray analysis. The band gap was calculated with the Kubelka-Munk function was found in the range from2.30 to 2.51 eV. Finally, M-H curves were plotted and the magnetic properties, such as coercivity, remanent magnetization, and saturation magnetization were determined.
Keywords
Abstract Views: 191
PDF Views: 1