Open Access
Subscription Access
Open Access
Subscription Access
Results on Fuzzy δ - Semi Preseparated Sets and Fuzzy Semi δ - Preseparation Axioms
Subscribe/Renew Journal
The aim of this paper is to introduce the concept of a new kind of sets - called fuzzy δ - semi preseparated sets and is to investigate the properties of this new kind of sets. Also the notion of fuzzy δ - semi preconnectedness is to be introduced. Some of the fundamental properties of the said connectedness is to be studied in fuzzy topological spaces. Lastly fuzzy semi δ - preseparation axioms are to be defined and some of their fundamental properties are also to be investigated in fuzzy setting.
Keywords
Fuzzy Topological Space, Fuzzy δ - Semi Preseparated Set, Fuzzy δ - Semi Preconnectedness, Fuzzy Semi δ - Pre Neighbourhood, Fuzzy Semi δ - Pre q - Neighbourhood, Fuzzy Semi δ - Preseparation Axioms.
User
Subscription
Login to verify subscription
Font Size
Information
- D. M. Ali and A. K. Srivastava, Fuzzy connectedness, Fuzzy Sets and Systems, 20 (1988) 203 - 208.
- K. K. Azad, On fuzzy semicontinuity, fuzzy almost continuity and fuzzy weakly continuity, J.Math. Anal.Appl.82 (1981) 14 - 32.
- S. Bin Shahana, On fuzzy strong semicontinuity and fuzzy precontinuity, Fuzzy Sets and Systems 44 (1991) 303 - 308.
- M. Caldas, S. Jafan and R. K. Saraf, Fuzzy (δ, P) - T1 Topological spaces J. Tri. Math. Soc. 9 (2008) 1- 4.
- C. L. Chang, Fuzzy topological spaces, J. Math. Anal. Appl. 24 (1968) 182-190.
- S. Ganguly and S. Saha, A note on δ - continuity and δ - connected sets in fuzzy set theory, Simon Stevin, 62 (1988) 127 - 141.
- S. Ganguly and S. Saha, Separation axioms and separation of connected sets in fuzzy topological spaces. Bull. Cal. Math., 79 (1987) 215 - 225.
- S. Ganguly and S. Saha, Separation axioms and Ti - fuzzy continuity, Fuzzy Sets and Systems, 16 (1985) 265 - 275.
- B. Ghosh, Semicontinuous and semiclosed mappings and semi connectedness in fuzzy setting, Fuzzy Sets and Systems 35 (1990) 345-355.
- B. Hutton and I. Reilly, Separation axioms in fuzzy topological spaces, Fuzzy Sets and Systems, 3 (1980) 90 - 104.
- P. M. Pu and Y. M. Liu, Fuzzy topology I. Neighbourhood structure of a fuzzy point and Moore - Smith convergence, J. Math. Anal. Appl., 76 (1980) 571 - 599.
- Mukherjee and S. Debnath, On δ - semiopen seta in Fuzzy Setting, J. Tri. Math. Soc., 8 (2006), 51-54.
- Mukherjee and R. Sarkar, On Fuzzy δ - semi Connectedness and Fuzzy δ - semi Separation Axioms, Proc. Nat. Sem. On Fuzzy Math. & its appl., Nov. 25-26, 2006; 139 - 144.
- Mukherjee and R. Dhar On weakly fuzzy δ - semi precontinuous mappings and weakly fuzzy δ - semi preirresolute mappings, The Journal of Fuzzy Mathematics, 18(1) (2010) 209-216.
- P. M. Pu and Y. M. Liu, Fuzzy topology I. Neighbourhood structure of a fuzzy point and Moore - Smith convergence, J. Math. Anal. Appl., 76 (1980) 571 - 599.
- S. P. Sinha, Separation axioms in fuzzy topological spaces, Fuzzy Sets and Systems, 45 (1992) 261 - 270.
- M. K. Singal and N. Parkash, Fuzzy preopen sets and fuzzy preseparation axioms, Fuzzy Sets and Systems, 44 (1991) 273 - 281.
- S. S. Thakur and S. S. Singh, On fuzzy semi preopen sets and fuzzy semi precontinuity, Fuzzy Sets and Systems 98 (1998) 383-391.
- S. S. Thakur and R. K. Khare, Fuzzy semi δ - preopen sets and fuzzy semi δ - pre continuous mappings, Universitatea din Bacau studii si cerceturi Strintitice Seria Mathematica 14 (2004) 201-211.
- S. S. Thakur, Fuzzy semi δ - preconnctedness, Universitatea din Bacau studii si cerceturi Strintitice Seria Mathematica 15 (2005) 161-167.
- S. S. Thakur and S. Singh, Fuzzy semi preconnectedness, Proc. Math. Soc. BHU, 12 (1996) 161 - 164.
- P. Wuyts and R. Lowen, Separation axioms in fuzzy topological spaces, J. Math. Anal. Appl., 93 (1983) 24 - 41.
- L. A. Zadeh, Fuzzy sets, Information and Control, 8 (1965) 338 - 353.
Abstract Views: 255
PDF Views: 1