Intuitionistic Fuzzy Small Submodule with Respect to an Arbitrary Intuitionistic Fuzzy Submodule
Subscribe/Renew Journal
In this paper, we introduce the concept of intuitionistic fuzzy small submodule with respect to an arbitrary intuitionistic fuzzy submodule of an R-module M. We derive the condition when an intuitionistic fuzzy submodule to be a small submodule with respect to another intuitionistic fuzzy submodule with the crisp small submodule of the R-module M. It is also shown that the sum of two intuitionistic fuzzy small submodules with respect to a fixed intuitionistic fuzzy submodule is again an intuitionistic fuzzy submodule with respect to the same fixed intuitionistic fuzzy submodule. This result can be extended to an arbitrary sum of intuitionistic fuzzy submodules. Further, we prove that the homomorphic image of an intuitionistic fuzzy small submodule with respect to a fixed intuitionistic fuzzy submodule is again an intuitionistic fuzzy small submodule with respect the homomorphic image of the fixed intuitionistic fuzzy submodule.
Keywords
- Atanassov, K. T. (1986) Intuitionistic fuzzy sets, Fuzzy Sets and Systems, 20(1), 87–96.
- Atanassov, K. T. (1999) Intuitionistic Fuzzy Sets: Theory and Applications, Series Studies on Fuzziness and Soft Computing, Vol. 35, Springer Physica-Verlag, Heidelberg.
- Zadeh, L. A. (1965) Fuzzy sets, Inform. Control, 8, 338–353
- Biswas, R. (1989) Intuitionistic fuzzy subgroup, Mathematical Forum, 10, 37–46.
- Hur, K., Kang, H. W. & Song, H. K. (2003) Intuitionistic Fuzzy Subgroups and Subrings, Honam Math J., 25(1), 19–41.
- Hur, K., Jang, S. Y. & Kang, H. W. (2005) Intuitionistic Fuzzy Ideals of a Ring, Journal of the Korea Society of Mathematical Education, Series B, 12(3), 193–209.
- Davvaz, B. Dudek, W.A and Jun, Y.B. (2006), Intuitionistic fuzzy Hv-submodules, Information Science, 176, pp. 285-300.
- Basnet, D. K. (2011) Topics in Intuitionistic Fuzzy Algebra, Lambert Academic Publishing, Germany.
- Isaac, P., & John, P. P. (2011) On Intuitionistic Fuzzy Submodules of a Module, Int. J. Of Mathematical Sciences and Applications, 1(3), 1447–1454.
- Rahman, S. & Saikia, H. K. (2012) Some aspects of Atanassov’s intuitionistic fuzzy submodules, Int. J. Pure and Appl. Mathematics, 77(3), 369–383.
- Sharma, P. K. (2013) (, )-Cut of intuitionistic fuzzy modules–II, Int. J. of Mathematical Sciences and Applications, 3(1), 11–17.
- Anderson, F. W. & Fuller K. R. (1992) Rings and Categories of Modules, Second edition, Springer Verl
- Sharma, P.K., Gagandeep Kaur, (2016), Intuitionistic fuzzy superfluous submodule, Notes on Intuitionistic Fuzzy Sets, Vol. 22 (3), pp. 34-46.
- Sharma, P.K., Gagandeep Kaur, (2018), Intuitionistic fuzzy hollow submodules, Notes on Intuitionistic Fuzzy Sets, Vol.24, no. 2, pp. 25-32.
- Beyranvand R and Moradi, F. (2015), Small submodules with respect to an arbitrary submodule, Journal of Algebra and Related Topics, Vol. 3, No 2, pp. 43-51.
- Sharma, P.K., Gagandeep Kaur, (2017), Residual quotient and annihilator of intuitionistic fuzzy sets of ring and module, International Journal of Computer Science & Information Technology (IJCSIT), Vol 9, No 4, pp. 1-15.
Abstract Views: 300
PDF Views: 1