Open Access Open Access  Restricted Access Subscription Access

Changes in Fruit Quality and Carotenoid Profile in Tomato (Solanum lycopersicon L.) Genotypes under Elevated Temperature


Affiliations
1 Division of Plant Physiology and Biochemistry, ICAR-Indian Institute of Horticultural Research, Hesaraghatta Lake Post, Bengaluru - 560 089, India
2 Division of Vegetable Crops, ICAR-Indian Institute of Horticultural Research, Hesaraghatta Lake Post, Bengaluru - 560 089, India
 

Tomato (Solanum lycopersicon L.) is a rich source of carotenoids, especially lycopene, and is affected severely by high temperatures under tropical conditions. To study the effect of elevated temperature on lycopene content and other quality parameters, five tomato genotypes, viz., RF4A, Abhinava, Arka Saurabh, IIHR 2195 and Arka Vikas, were grown in a temperature gradient tunnel (TGT) facility under 33.4 and 35.4°C temperature conditions. Fruits were analyzed for total carotenoids, total phenols, total flavonoids, total sugars, TSS, acidity, Vitamin C besides carotenoids profile (β-carotene, lycopene, phytoene and luteoxanthin content). Results revealed that all the quality parameters studied were superior at 33.4°C, compared to 35.4°C in all the genotypes. 'IIHR 2195' recorded highest total phenols (479.28mg/100g dw), total flavonoids (70.27mg/100g dw), ferric reducing antioxidant potential (FRAP) (310.53mg/100g dw), diphenyl picryl hydrazyl (DPPH) radical (487.89mg/100g dw), Vitamin C content (292.25mg/ 100g dw) and total sugars (606.88mg/g dw) at 33.4°C and at 35.4°C. 'RF4A' and 'Arka Vikas' were found to have better total carotenoids content and lycopene at higher temperature than other genotypes. 'Arka Vikas' recorded highest total soluble solids (TSS) (8.9°Brix) and acidity (0.80%) at 35.4°C. Higher TSS and acidity were recorded at 35.4°C than at 33.4°C in all the five genotypes. Genotypic variation was observed in the above stated biochemical parameters in response to elevated temperatures.

Keywords

Tomato, TGT, Antioxidants, Elevated Temperature, UPLC.
User
Notifications
Font Size

  • Agarwal, S. and Rao, A.V. 2000. Tomato lycopene and its role in human health and chronic diseases. Can. Med. Assoc. J., 163:739-744
  • Association of Official Analytical Chemists. 2000. In: Official Methods of Analysis, 17th edition, Titratable acidity of fruit products, 942.15. AOAC International, Gaithersburg
  • Association of Official Analytical Chemists. 2006. In: Official Methods of Analysis, Ascorbic acid, 967.21, 45.1.14. AOAC International, Gaithersburg
  • Benzie, I.F.F. and Strain, J.J. 1996. The ferric reducing ability of plasma (FRAP) as a measure of antioxidant power: The FRAP assay. Anal. Biochem., 239:70-76
  • Chun, O.K., Kim, D.O., Moon, H.Y., Kang, H.G. and Lee, C.Y. 2003. Contribution of individual polyphenolics to total antioxidant capacity of plums. J. Agri. Food Chem., 51:7240-7245
  • Demiray, E., Tulek, Y. and Yilmaz, Y. 2013. Degradation kinetics of lycopene, β-carotene and ascorbic acid in tomatoes during hot air drying. Food Sci. Tech., 50:172-176
  • Dumas, Y., Dadomo, M., Lucca, G.D. and Grolier, P. 2003. Effects of environmental factors and agricultural techniques on antioxidant content of tomatoes. J. Sci. Food Agri., 83:369-382
  • Ferreyra, R.M., Vina, S.Z., Mugridge, A. and Chaves, A.R. 2007. Growth and ripening season effects on antioxidant capacity of strawberry cultivar Selva. Sci. Hort., 112:27-32
  • Fleisher, D.H., Logendra, L.S., Moraru, C., Both, A.J., Cavazzoni, J., Gianfagna, T., Lee, T.C. and Janes, H.W. 2006. Effect of temperature perturbations on tomato (Lycopersicon esculentum Mill.) quality and production scheduling. J. Hort. Sci. Biotech., 81:125-131
  • Garcia, E. and Barrett, D.M. 2006. Assessing lycopene content in California processing tomatoes. J. Food Proc. Pres., 30:56-70
  • Gautier, H., Rocci, A., Buret, M., Grasselly, D. and Causse, M. 2005. Fruit load or fruit position alters response to temperature and subsequently cherry tomato quality. J. Sci. Food Agri., 85:1009-1016
  • Geisenberg, C. and Stewart, K. 1986. Field crop management. In: The Tomato Crop (Atherton, J.G. and Rudich, J. eds.) pp. 511-557
  • George, B., Kaur, C., Khurdiya, D.S. and Kapoor, H.C. 2004. Antioxidants in tomato (Lycopersium esculentum) as a function of genotype. Food Chem., 84:45-51
  • Gunawardhana, M.D.M. and De Silva, C.S. 2011. Impact of temperature and water stress on growth yield and related biochemical parameters of okra. Trop. Agri. Res., 23:77-83
  • Helyes, L., Lugasi, A. and Pek, Z. 2007. Effect of natural light on surface temperature and lycopene content of vine ripened tomato fruit. Can. J. Pl. Sci., 87:927929
  • Islam, M.T. 2011. Effect of temperature on photosynthesis, yield attributes and yield of tomato genotypes. Int’l. J. Expt’l. Agri., 2:8-11
  • Kang, H.M. and Saltveit, M.E. 2002. Antioxidant capacity of lettuce leaf tissue increases after wounding. J. Agri. Food Chem., 50:7536-7541
  • Kaur, C., Walia, S., Nagal, S., Walia, S., Singh, J., Singh, B.B., Saha, S., Singh, B., Kalia, P., Jaggi, S. and Sarika. 2013. Functional quality and antioxidant composition of selected tomato (Solanum lycopersicon L.) cultivars grown in Northern India. Food Sci. Tech., 50:139-145
  • Khanal, B. 2012. Effect of day and night temperature on pollen characteristics, fruit quality and storability of tomato. Master’s Thesis, Department of Plant and Environmental Sciences, Norwegian University of Life Sciences, Norway
  • Laxman, R.H., Srinivasa Rao, N.K., Bhatt, R.M., Sadashiva, A.T., John Sunoj, V.S., Biradar, G., Pavithra, C.B., Manasa, K.M. and Dhanyalakshmi, K.H. 2013. Response of tomato (Lycopersicon esculentum Mill.) genotypes to elevated temperature. J. Agrometeorol., 15:38-44
  • Lee, S.K. and Kader, A.A. 2000. Pre-harvest and postharvest factors influencing Vitamin C content of horticultural crops. Postharvest Biol. Technol., 20:207-220
  • Lichtenthaler, H.K. 1987. Chlorophylls and carotenoids: Pigments of photosynthetic biomembranes. Meth. Enzymol., 148:350-382
  • Miller, G.L. 1959. Use of dinitrosalicylic acid reagent for determination of reducing sugars. Anal. Chem., 31:426-428
  • Serino, S., Gomez, L., Costagliola, G. and Gautier, H. 2009. HPLC assay of tomato carotenoids: validation of a rapid micro-extraction technique. J. Agri. Food Chem., 57:8753-8760
  • Singleton, V.L. and Rossi, J.A. Jr. 1965. Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Amer. J. Enol. Viticult., 16:144-158
  • Toor, R.K. and Savage, G.P. 2006. Changes in major antioxidant components of tomatoes during postharvest storage. Food Chem., 99:724-727
  • Toor, R.K., Savage, G.P. and Lister, C.E. 2006. Seasonal variations in the antioxidant composition of greenhouse grown tomatoes. J. Food Comp. Anal., 19:1-10
  • Utsunomiya, N. 1992. Effect of temperature on shoot growth, flowering and fruit growth of purple passion fruit (Passiflora edulis Sims var. edulis). Sci. Hort., 52:63-68
  • Wang, S.Y. 2006. Effect of pre-harvest conditions on antioxidant capacity in fruits. Acta Hort., 712:299305
  • Wang, S.Y. and Zheng, W. 2001. Effect of plant growth temperature on antioxidant capacity in strawberry. J. Agril. Food Chem., 49:4977-4982
  • Wang, W., Vinocur, B. and Altman, A. 2003. Plant responses to drought, salinity and extreme temperatures: towards genetic engineering for stress tolerance. Planta, 218:1-14

Abstract Views: 187

PDF Views: 113




  • Changes in Fruit Quality and Carotenoid Profile in Tomato (Solanum lycopersicon L.) Genotypes under Elevated Temperature

Abstract Views: 187  |  PDF Views: 113

Authors

K. S. Shivashankara
Division of Plant Physiology and Biochemistry, ICAR-Indian Institute of Horticultural Research, Hesaraghatta Lake Post, Bengaluru - 560 089, India
K. C. Pavithra
Division of Plant Physiology and Biochemistry, ICAR-Indian Institute of Horticultural Research, Hesaraghatta Lake Post, Bengaluru - 560 089, India
R. H. Laxman
Division of Plant Physiology and Biochemistry, ICAR-Indian Institute of Horticultural Research, Hesaraghatta Lake Post, Bengaluru - 560 089, India
A. T. Sadashiva
Division of Vegetable Crops, ICAR-Indian Institute of Horticultural Research, Hesaraghatta Lake Post, Bengaluru - 560 089, India
T. K. Roy
Division of Plant Physiology and Biochemistry, ICAR-Indian Institute of Horticultural Research, Hesaraghatta Lake Post, Bengaluru - 560 089, India
G. A. Geetha
Division of Plant Physiology and Biochemistry, ICAR-Indian Institute of Horticultural Research, Hesaraghatta Lake Post, Bengaluru - 560 089, India

Abstract


Tomato (Solanum lycopersicon L.) is a rich source of carotenoids, especially lycopene, and is affected severely by high temperatures under tropical conditions. To study the effect of elevated temperature on lycopene content and other quality parameters, five tomato genotypes, viz., RF4A, Abhinava, Arka Saurabh, IIHR 2195 and Arka Vikas, were grown in a temperature gradient tunnel (TGT) facility under 33.4 and 35.4°C temperature conditions. Fruits were analyzed for total carotenoids, total phenols, total flavonoids, total sugars, TSS, acidity, Vitamin C besides carotenoids profile (β-carotene, lycopene, phytoene and luteoxanthin content). Results revealed that all the quality parameters studied were superior at 33.4°C, compared to 35.4°C in all the genotypes. 'IIHR 2195' recorded highest total phenols (479.28mg/100g dw), total flavonoids (70.27mg/100g dw), ferric reducing antioxidant potential (FRAP) (310.53mg/100g dw), diphenyl picryl hydrazyl (DPPH) radical (487.89mg/100g dw), Vitamin C content (292.25mg/ 100g dw) and total sugars (606.88mg/g dw) at 33.4°C and at 35.4°C. 'RF4A' and 'Arka Vikas' were found to have better total carotenoids content and lycopene at higher temperature than other genotypes. 'Arka Vikas' recorded highest total soluble solids (TSS) (8.9°Brix) and acidity (0.80%) at 35.4°C. Higher TSS and acidity were recorded at 35.4°C than at 33.4°C in all the five genotypes. Genotypic variation was observed in the above stated biochemical parameters in response to elevated temperatures.

Keywords


Tomato, TGT, Antioxidants, Elevated Temperature, UPLC.

References