Open Access Open Access  Restricted Access Subscription Access

Identification of NBS-LRR Resistance Gene Analogues (RGA) from Rose (IIHRR13-4) Resistant to Powdery Mildew (Podosphaera pannosa (Wallr.:Fr.) de Bary)


Affiliations
1 Division of Crop Protection, ICAR-Indian Institute of Horticultural Research, Bengaluru - 560 089, India
2 Division of Floriculture and Medicinal crops,, ICAR-Indian Institute of Horticultural Research, Bengaluru - 560 089, India
 

Resistance is the best strategy to manage powdery mildew (Podosphaera pannosa (Wallr.:Fr.) de Bary) of rose. Identification of resistant genes (R genes) from plant species will help in breeding programs. Nucleotide Binding Site - Leucine Rich Repeats (NBSLRR) is a major class of R gene family in plants. This study reports the identification and molecular characterization of resistance gene analogues from roses maintained at ICARIndian Institute of Horticultural Research (IIHR). The powdery mildew resistant line IIHRR13-4 was compared with the susceptible commercial cultivar, konfetti. PCR based approaches with degenerative primers based on different conserved motifs of NBS-LRR were employed to isolate resistance gene analogues (RGAs) from rose. Eleven RGAs (IIHRR13-4R1, IIHRR13-4R2, IIHRR13-4R3, IIHRR13-4R4, IIHRR13-4R5, IIHRR13- 4R6, IIHRR13-4R7, IIHRR13-4R8 IIHRR13-4R9 and IIHRR13-4R10) were identified from powdery mildew resistant germplasm line, IIHRR13-4, based on the sequence and similarity to RGAs from rosaceae family and other crops. The major similarity to rose RGAs reported are from Fragaria vesca, Rosa hybrid cultivar, Prunus and Rosa chinensis. RGAs isolated from IIHRR13-4 belonged to Toll Interleukin Receptor (TIR)-NBS-LRR and Non-TIR-NBS-LRR RGAs (Lecine Zipper (LZ) type). Different motifs of RGAs identified were P-loop, RNBS A, kinase 2, kinase 3a, RNBS-D and GLPL of NBS domain. This study reports the existence of resistance at genetic level in powdery mildew resistant genotype IIHRR13-4. These RGAs will be useful for mapping and characterization of R genes in IIHRR13-4 and breeding for improved powdery mildew resistance in roses.

Keywords

Nucleotide Binding Site-Leucine Rich Repeats (NBS-LRR), Podosphaera pannosa, Powdery mildew, Resistance Gene Analogues (RGA) and Rose.
User
Notifications
Font Size

  • Aarts, M. G., Hekkert, B. L., Holub, E. B., Beynon, J. L, Stiekema, W. J. and Pereira, A. 1998. Identification of R-gene homologues DNA fragments genetically linked to disease resistance loci in Arabidopsis thaliana. Mol. Plant. Microbe. Interact. 11: 251-258.
  • Ayana, T. D., Yasmin, A., Le, L. T., Kaufmann, H., Biber, A. and Kuhr, A. 2011. Mining disease resistance genes in roses: functional and molecular characterization of the Rdr1 locus. Front. Plant Sci. 2:1-11.
  • Belkhadir, Y., Subramaniam, R. and Dangl, L.G. 2004.Plant disease resistance protein signaling: NBS– LRR proteins and their partners. Curr. Opin. Plant Biol.7: 391–399.
  • Biber, A., Kaufmann, H., Linde, M., Spiller, M., Terefe, D. and Debener, T. 2010. Molecular markers from a BAC contig spanning the Rdr1 locus: A tool for marker assisted selection in roses. Theor. Appl. Genet. 120: 765-773.
  • Calenge, F., van der Linden, C. G., van de Weg, E., Schouten, H. J., Van Arkel, G., Denance, C. and Durel, C.E. 2005. Resistance gene analogues identified through the NBS profiling method map close to major genes and QTL for disease resistance in apple. Theor. Appl. Genet. 110: 660–668.
  • Collier, M.S. and Moffett, P. 2009. NB-LRRs work a ‘‘bait and switch’’ on pathogens. Trends. Plant Sci. 14:521-529.
  • Dangl, J. L. and Jones, J.D.G. 2001. Plant pathogens and integrated defense responses to infection. Nature. 411: 826–833.
  • Debener, T. and Byrne, H.T. 2014. Disease resistance breeding in rose: current status and potential of biotechnological tools. Plant Sci. 228:107-117.
  • Deng, Z., Huang, S., Ling, P., Chen, C., Yu, C., Weber, C., Moore, G.A. and Gmitter, Jr. F.G. 2000. Cloning and characterization of NBS-LRR class resistance-gene candidate sequences in citrus. Theor. Appl. Genet. 101: 814-822.
  • Dettori, M.T., Quarta, R. And Verde, I. 2001. A peach linkage map integrating RFLPs, SSRs, RAPDs, and morphological markers . Genome. 44:783-790.
  • Dirlewanger, E., Graziano, E., Joobeur, T., GarrigaCaldere, F., Cosson, P., Howad, W. And Arus, P. 2004. Comparative mapping and marker assisted selection in Rosaceae fruit crops. Proc. Natl. Acad Sci. 101:9891– 9896.
  • Dirlewanger, E., Pascal, T., Zuger, C. and Kervella, J. 1996, Analysis of molecular markers associated with powdery mildew resistance genes in peach [(Prunus persica (L.)Batsch)] Prunus davidiana hybrids. Theor. Appl. Genet. 93:909–919.
  • Doyle, J.J. and Doyle, J.L A. 1987. Rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochemical Bulletin. 19:11-15.
  • Ellis, J. and Jones, D. 1998. Structure and function of proteins controlling strain-specific pathogen resistance in plants. Curr. Opin. Plant Biol. 1:288-293.
  • Ellis, J., Dodds, P. and Pryor, T. 2000. Structure, function and evolution of plant disease resistance genes. Curr. Opin. Plant Biol. 3: 278-284.
  • Ellis, J.G. and Jones, D.A. 2003. Plant disease resistance genes. Innate Immunity. Infectious Disease (eds.) Ezekowitz R.A.B. and Hoffmann J.A.), Human Press, Totowa, NJ. pp. 27-45.
  • Flor, H.H. 1971. Current status of the gene-forgene concept. Annu. Rev. Phytopathol. 9: 278–296.
  • Hall, T.A. 1999. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucl. Acids. Symposium Series. 41:95-98.
  • Hammond-Kosack, K. and Jones, J.D.G. 1997. Plant disease resistance genes. Annu. Rev. Plant Physiol. Plant. Mol Biol. 48: 575– 607.
  • Hammond-Kosack, K.E., Jones, D.A. and Jones, J.D.G. 1996. Ensnaring microbes: the components of plant disease resistance. New Phytol. 133 :11-24.
  • Hattendorf, A.andDebener, T. 2007. Molecular characterization of NBS-LRR-RGAs in the rose genome. Physiol. Plant. 129 : 775-786.
  • Hattendorf, A.andDebener, T.2007. NBS-LRR-RGAs in roses: diversity, genomic organization, expression and chromosomal location. Acta Hortic. 751:151-162.
  • Hattendorf, A., Linde, M. and Mattiesch, L.2004. Genetic analysis of rose resistance genes and their localization in the rose genome, Acta Hortic. 651:123-130.
  • Holt, III. F.B., Mackey, D.AndDangl, L.J.2000. Recognition of pathogens by plants. Curr. Biol. 10: R5-R7.
  • Jones, D.G.J.2001. Putting knowledge of plant disease resistance genes to work. Curr.Opin. Plant. Biol. 4: 281-287.
  • Lalli, D.A., Decroocq, V., Blenda, A.V., SchurdiLevraud, V., Garay, L., Le, G. O., Damsteegt, V., Reighard, G.L.and Abbott, A.G.2005. Identification and mapping of resistance gene analogs (RGAs) in Prunus: a resistance map for Prunus. Theor. Appl. Genet. 111:1504– 1513.
  • Leus, L., Huylenbroeck, V.J., Bockstaele, V.E.andHofte, M.2003. Bioassays for resistance screening in commercial rose breeding. Acta Hortic. 651:39-45.
  • Linde,M. and Debener, T.2003. Isolation and identification of eight races of powdery mildew of roses (Podosphaerapannosa(Wallr.:Fr.) de Bary) and the genetic analysis of the resistance gene Rpp1. Theor. Appl. Genet. 107: 256-62.
  • Linde, M., Mattiesch, L.and Debener, T.2004. Rpp1, a dominant gene providing race-specific resistance to rose powdery mildew (Podosphaera pannosa): molecular mapping, SCAR development and confirmation of disease resistance data. Theor. Appl. Genet. 109: 1261-1266.
  • McHale, L., Tan, X., Koehl, P. and Michelmore, R.W. 2006. Plant NBS-LRR proteins: adaptable guards. Genome Biology. 7:212.
  • Meyers, B.C., Dickerman, A.W., Michelmore, R.W., Sivaramakrishnan, S., Sobral, B.W. and Young, N.D.1999. Plant disease resistance genes encode members of an ancient and diverse protein family within the nucleotide-binding super-family. Mol. Plant. Microbe Interact. 20:317–332.
  • Meyers, B.C., Kozik, A., Griego, A., Kuang, H. And Michelmore, R.W. 2003. Genome-wide analysis of NBS-LRR-encoding genes in Arabidopsis. Plant Cell. 15: 809–834.
  • Perazzolli, M., Malacarne, G., Baldo, A., Righetti, L., Bailey, A., Fontana, P., Velasco, R. and Malnoy, M. 2014. Characterization of resistance gene analogues (RGAs) in Apple (Malus X domestica Borkh.) and their evolutionary history of the Rosaceae Family. Plos One. 9 : 2. e83844.
  • Pessina, S., Pavan, S., Catalano, D., Gallotta, A., Visser, R., Bai, Y., Malnoy, M. and Schouten, H. 2014. Characterization of the MLO gene family in Rosaceae and gene expression analysis in Malus domestica. BMC Genomics. 15: 618.
  • Phukan, U.J., Jeena, G.S., and Shukla, R.K. 2016. WRKY Transcription Factors: Molecular regulation and stress responses in plants. Front. Plant Sci. 7:760.
  • Quarta, R., Dettori, M.T., Sartori, A. and Verde, I. 2000. Genetic linkage map and QTL analysis in peach. Acta Hortic. 521:233–238.
  • Saraste, M., Sibbald, P.R. and Wittinghofer, A. 1990. The P-loop, a common motif in ATP-and GTPbinding proteins. Trends. Biochem. Sci. 15:430-434.
  • Sekhwal, K.M., Li, P., Lam, I., Wang, X., Cloutier, S. and You, M.F. 2015. Disease resistance gene analogs (RGAs) in plants. Int. J. Mol. Sci. 16:19248-19290.
  • Song, W.Y., Pi, L.Y., Wang, G.L., Gardner, J., Holsten, T.and Ronald, P.C. 1997. Evolution of the rice Xa21 disease resistance gene family. The Plant Cell. 9:1279-1287.
  • Tamura, K., Stecher, G., Peterson, D., Filipski, A. and Kuma, S. 2013. MEGA6 : Molecular Evolutionary Genetics Analysis version 6.0. Mo. Biol. Evol. 30:2725-2729.
  • Von Malek, B., Weber, W.E. and Debener, T., 2000. Identification of molecular markers linked to Rdr1, a gene conferring resistance to blackspot in roses. Theor. Appl. Genet. 101:977-983.
  • Vossen, H.J., Dezhsetan, S., Esselink, D., Arens, M., Sanz, J. M. And Verweij, W. 2013. Novel applications of motif-directed profiling to identify disease resistance genes in plants. Plant Methods. 9:37.
  • Xu, Q., Wen, X. and Deng, X. 2005. Isolation of TIR and non TIR NBS-LRR resistance gene analogues and identification of molecular markers linked to a powdery mildew resistance locus in chestnut rose (Rosa roxburghii Tratt). Theor. Appl. Genet. 111:819-830.
  • Xu, Q., Wen, X. and Deng, X. 2007. Phylogenetic and evolutionary analysis of NBS-encoding genes in Rosaceae fruit crops. Mol. Phylogenet. Evol. 44:315–324.
  • Young, N.D. 2000. The genetic architecture of resistance. Curr. Opin. Plant. Biol. 3:285–290.
  • Yu, Y.G., Buss, G.R. and Maroof, M. 1996. Isolation of a super-family of candidate disease resistance genes in soybean based on a conserved nucleotide-binding site. Proc. Natl. Acad sci. 93: 11751-11756.
  • Zamora, M.M., Castagnaro, A. and Ricci, J.D. 2004. Isolation and diversity analysis of resistance gene analogues (RGAs) from cultivated and wild strawberries. Mol. Genet and Genomics. 272 : 480-487.

Abstract Views: 497

PDF Views: 180




  • Identification of NBS-LRR Resistance Gene Analogues (RGA) from Rose (IIHRR13-4) Resistant to Powdery Mildew (Podosphaera pannosa (Wallr.:Fr.) de Bary)

Abstract Views: 497  |  PDF Views: 180

Authors

Neethu K. Chandran
Division of Crop Protection, ICAR-Indian Institute of Horticultural Research, Bengaluru - 560 089, India
S. Sriram
Division of Crop Protection, ICAR-Indian Institute of Horticultural Research, Bengaluru - 560 089, India
Tejaswini Prakash
Division of Floriculture and Medicinal crops,, ICAR-Indian Institute of Horticultural Research, Bengaluru - 560 089, India

Abstract


Resistance is the best strategy to manage powdery mildew (Podosphaera pannosa (Wallr.:Fr.) de Bary) of rose. Identification of resistant genes (R genes) from plant species will help in breeding programs. Nucleotide Binding Site - Leucine Rich Repeats (NBSLRR) is a major class of R gene family in plants. This study reports the identification and molecular characterization of resistance gene analogues from roses maintained at ICARIndian Institute of Horticultural Research (IIHR). The powdery mildew resistant line IIHRR13-4 was compared with the susceptible commercial cultivar, konfetti. PCR based approaches with degenerative primers based on different conserved motifs of NBS-LRR were employed to isolate resistance gene analogues (RGAs) from rose. Eleven RGAs (IIHRR13-4R1, IIHRR13-4R2, IIHRR13-4R3, IIHRR13-4R4, IIHRR13-4R5, IIHRR13- 4R6, IIHRR13-4R7, IIHRR13-4R8 IIHRR13-4R9 and IIHRR13-4R10) were identified from powdery mildew resistant germplasm line, IIHRR13-4, based on the sequence and similarity to RGAs from rosaceae family and other crops. The major similarity to rose RGAs reported are from Fragaria vesca, Rosa hybrid cultivar, Prunus and Rosa chinensis. RGAs isolated from IIHRR13-4 belonged to Toll Interleukin Receptor (TIR)-NBS-LRR and Non-TIR-NBS-LRR RGAs (Lecine Zipper (LZ) type). Different motifs of RGAs identified were P-loop, RNBS A, kinase 2, kinase 3a, RNBS-D and GLPL of NBS domain. This study reports the existence of resistance at genetic level in powdery mildew resistant genotype IIHRR13-4. These RGAs will be useful for mapping and characterization of R genes in IIHRR13-4 and breeding for improved powdery mildew resistance in roses.

Keywords


Nucleotide Binding Site-Leucine Rich Repeats (NBS-LRR), Podosphaera pannosa, Powdery mildew, Resistance Gene Analogues (RGA) and Rose.

References