Open Access
Subscription Access
Content-Based Image Retrieval Features:A Survey
Content-Based Image Retrieval (CBIR) systems have been used for the searching of relevant images in various research areas. In CBIR systems features such as shape, texture and color are used. The extraction of features is the main step on which the retrieval results depend. Color features in CBIR are used as in the color histogram, color moments, conventional color correlogram and color histogram. Color space selection is used to represent the information of color of the pixels of the query image. The shape is the basic characteristic of segmented regions of an image. Different methods are introduced for better retrieval using different shape representation techniques; earlier the global shape representations were used but with time moved towards local shape representations. The local shape is more related to the expressing of result instead of the method. Local shape features may be derived from the texture properties and the color derivatives. Texture features have been used for images of documents, segmentation-based recognition,and satellite images. Texture features are used in different CBIR systems along with color, shape, geometrical structure and sift features.
Keywords
CBIR, Feature Extraction, Feature Selection, Color, Texture, Shape.
User
Font Size
Information
- Smeulders, A.W., M. Worring, S. Santini, A. Gupta, and R. Jain. "Content-Based Image Retrieval at the end of early years." IEEE Trans. Pattern Analysis and Machine Intelligence 22, no. 12 (2000): 1349-1380.
- Enser, P.G.B., "Pictorial information retrieval", J. Document 51, no. 2 (1995): 126-170.
- Liu, Y., Zhang, D., Lu,G., Ma, W., "A survey of content-based image retrieval with high semantics". Pattern Recognition 40, no.1 (2007): 262-282
- Remco, C., Veltkamp, and MirelaTanase,"Content-based image retrieval systems: A survey". Technical Report UU-CS-2000-34 (2001).
- Liu, Ce, Jenny Yuen, and Antonio Torralba. "SIFT Flow: Dense Correspondence Across Scenes and Its Applications." In Dense Image Correspondences for Computer Vision, pp. 15-49. Springer International Publishing, 2016.
- Babu, R. Bulli, V. Vanitha, and K. SaiAnish. "CBIR using Color, Texture, Shape and Active Re-Ranking Method." Indian Journal of Science and Technology 9, no. 17 (2016).
- Sangkloy, Patsorn, Nathan Burnell, Cusuh Ham, and James Hays. "The sketchy database: learning to retrieve badly drawn bunnies." ACM Transactions on Graphics (TOG) 35, no. 4 (2016): 119.
- Liu, P., Jia, K.,Wang, Z., and Lv, Z. "A New and effective Image Retrieval Method based on Combined Features", Proc. IEEE Int. Conf. on Image and Graphics '07, (August 2007):786-790.
- Gevers, Theo, and Arnold WM Smeulders. "Pictoseek: Combining color and shape invariant features for image retrieval." Image Processing, IEEE Transactions on 9.1 (2000): 102-119.
- Zhang, Jianlin, and WenshengZou. "Content-Based Image Retrieval using color and edge direction features." Advanced Computer Control (ICACC), 2010 2nd International Conference on. Vol. 5. IEEE (2010).
- Saha, S.K., Amit, K.D., and Bhabatosh, C. "CBIR using perception based texture and color measures." Pattern Recognition, 2004. ICPR 2004. Proceedings of the 17th International Conference on. Vol. 2. IEEE, (2004).
- Yang, Mingqiang, KidiyoKpalma, and Joseph Ronsin. "A survey of shape feature extraction techniques." Pattern recognition (2008): 43-90.
- Ma, Liguang, Yanrong Cao, and Jianbang He. "Biomedical Image Storage, Retrieval and Visualization Based-on Open Source Project." Conference on Image and Signal Processing CISP '08. 2008. 63- 66 .
- Shapiro, L. G., I. Atmosukarto, H. Cho, H. J. Lin, S. Ruiz-Correa, and J. Yuen. "Similarity-Based Retrieval for Biomedical Applications." Case-Based Reasoning on Images and Signals Studies in Computational Intelligence. 2008. 355-387.
- Muller, H., N. Michoux, D. Bandon, and A. Geissbuhler. "A review of content-based image retrieval systems in medical applicationsClinical benefits and future directions." International Journal of Medical Information 11 (2004): 73.
- Gudivada, V.N., and V.V. Raghavan. "CBIR systems." Computer 28, no. 9 (1995): 18-22.
- Ruia, Yong, Thomas S. Huang, and Shih-Fu Chang. "Image Retrieval: Current Techniques, Promising Directions, and Open Issues." Journal of Visual Communication and Image Representation 10, no. 1 (March 1999): 39–62.
- Goodall, Simon, et al. "SCULPTEUR: Multimedia Retrieval for Museums." Image and Video Retrieval-Lecture Notes in Computer Science (Springer) 3115 (2004): 638-646.
- Allen, P.J., R. Vaccaro, and G. Presutti." ARTISTE: An Integrated Art Analysis and Navigation Environment." Cultivate Interactive 1 (2000).
- Kekre, H.B., and Sudeep D. Thepade. "Improving ‘Color to Gray And Black’ using Kekre’s LUV Color Space." IEEE International Advanced Computing Conference. Patiala, India, 2009.
- Thepade, Sudeep D., and H.B. Kekre. "Color Traits Transfer to Grayscale Images." Proceedings Of IEEE First International Advanced Computing Conference 2010. 2010.
- Goodrum, Abby A. "Image information retrieval: An overview of current research." Informing Science 3, no. 2 (2000): 63-66.
- Erik Hjelmås, 1, Boon Kee Low. "Face Detection: A Survey." Computer Vision and Image Understanding 83, no. 3 (2001): 236– 274.
- Abdel-Mottaleb, M., A.K. Jain, and Rein-Lien Hsu. "Face detection in color images." Pattern Analysis and Machine Intelligence, IEEE Transactions 24, no. 5 (May 2002): 696-706.
- Lee, Jung-Eun, Rong Jin, N. Gregg, and A.K. Jain. "Content-based image retrieval: An application to tattoo images." 16th IEEE International Conference on Image Processing (ICIP). 2009. 2745- 2748]
- Von Ahn, Luis. "CAPTCHA: Using hard AI problems for security." Advances in Cryptology—EUROCRYPT, 2003: 646-646.
- Datta, Ritendra, Jia Li, and James Z. Wang. "IMAGINATION: a robust image-based CAPTCHA generation system." Proceedings of the 13th annual ACM international conference on Multimedia. ACM, 2005.
- Wenyin, L., S. Dumais, Y. Sun, H. Zhang, M. Czerwinski, and B. Field. "Semi-automatic image annotation." Proceedings of interact: Conference on HCI. 2001. 326-333.
- Freitas, M. P., Brown, S. D., & Martins, J. A. " MIA-QSAR: a simple 2D image-based approach for quantitative structure–activity relationship analysis." Journal of molecular structure 738, no. 1 (2005): 149-154.
- I. Irum, M. Raza, and M. Sharif, "Morphological Techniques for Medical Images: A Review," Research Journal of Applied Sciences, Engineering and Technology, Vol. 4, pp. 2948-2962, 2012.
- Yasmin, Mussarat, Muhammad Sharif, and SajjadMohsin. "Neural Networks in Medical Imaging Applications: A Survey", World Applied Sciences Journal 22, no. 1 (2013): 85-96.
- Muhammad Sharif, Adeel Khalid, MudassarRaza, SajjadMohsin, “Face Recognition Using Gabor Filters”, Journal of Applied Computer Science & Mathematics, Volume 5, issue 11, pp 53-57, 2011
- Muhammad Sharif, SajjadMohsin, Muhammad YounasJaved, and Muhammad Atif Ali,” Single Image Face Recognition Using Laplacian of Gaussian and Discrete Cosine Transforms” the International Arab Journal of Information Technology (IAJIT), 9, no. 6 (2012): 562-570.
- Aisha Azeem, Muhammad Sharif, MudassarRaza, MarryamMurtaza, “A Survey: Face Recognition Techniques Under Partial Occlusion”, The International Arab Journal of Information Technology (IAJIT) Volume 11, No. 1, January 2014
- Muhammad Sharif, SajjadMohsin, Muhammad Jawad Jamal, MudassarRaza, " Illumination Normalization Preprocessing for face recognition”, in Environmental Science and Information Application Technology (ESIAT), 2010 International Conference on, 2010, pp. 44-47
- Muhammad Sharif, Jamal H. Shah, SajjadMohsin, and MudassarRaza,”Sub-Holistic Hidden Markov Model for Face Recognition”, Research Journal of Recent Sciences, Vol. 2, pp. 10-14, 2013.
- Muhammad Sharif, Muhammad Atif Ali, MudassarRaza, SajjadMohsin, “Face Recognition using Edge Information and DCT”, Sindh University Research Journal (SURJ) (SCIENCE SERIES), Volume 43 (2) 209-214 (2011)
- MarryamMurtaza, Muhammad Sharif, MudassarRaza, Jamal Hussain Shah, “Analysis of Face Recognition under Varying Facial Expression: A Survey”, The International Arab Journal of Information Technology (IAJIT) Volume 10, No.4 , July 2013
- Jamal Shah, Muhammad Sharif, MudassarRaza, Aisha Azeem, “A Survey: Linear and Nonlinear PCA Based Face Recognition Techniques”, The International Arab Journal of Information Technology (IAJIT) Volume 10, No. 6, November 2013
- Sharif, Muhammad, SaadAnis, MudassarRaza, and SajjadMohsin. "Enhanced SVD Based Face Recognition." Journal of Applied Computer Science & Mathematics 12 (2012).
- Muhammad Sharif, Muhammad YounasJaved, SajjadMohsin, “Face Recognition Based on Facial Features”, Research Journal of Applied Sciences, Engineering and Technology 4(17): 2879-2886, 2012
- Murtaza, Marryam, Muhammad Sharif, MudassarRaza, and J. Shah. "Face Recognition using Adaptive Margin Fisher’s Criterion and Linear Discriminant Analysis." International Arab Journal of Information Technology 11, no. 2 (2014): 1-11.
- Muhammad Sharif, SajjadMohsin, Muhammad Jawad Jamal, Muhammad YounasJaved, MudassarRaza, ”Face Recognition for Disguised Variations Using Gabor Feature Extraction” Australian Journal of Basic and Applied Sciences, Vol. 5, pp. 1648-1656, 2011.
- Muhammad Sharif, Kamran Ayub, Danish Sattar, MudassarRaza, SajjadMohsin,” Enhanced and Fast Face Recognition by Proposing Hashing Algorithm”, Journal of Applied Research and Technology (JART), Vol. 10, pp. 607-617, 2012.
- Muhammad Sharif, Muhammad Kamran Ayub, MudassarRaza and SajjadMohsin,” Data Reductionality Technique for Face Recognition”, Proceedings of the Pakistan Academy of Sciences, 48 (4): 229-234, 2011
- Muhammad Sharif, SajjadMohsin, Rana Abdul Hanan, Muhammad YounasJaved, MudassarRaza, “Using Nose Heuristics for Efficient Face Recognition”, Sindh University Research Journal (SURJ) (SCIENCE SERIES) Vol.43 (1-A) 63-68 (2011)
- Shah, Jamal Hussain, Muhammad Sharif, MudassarRaza, and Aisha Azeem. "Face recognition across pose variation and the 3S problem." Turkish Journal of Electrical Engineering and Computer Science 22, no. 6 (2014): 1423-1436.
- Muhammad Sharif, Adeel Khalid, MudassarRaza, SajjadMohsin, “Face Detection and Recognition Through Hexagonal Image Processing”, Sindh Univ. Res. Jour. (Sci. Ser.) Vol.44 (3) 359-366 (2012)
- Shah, Jamal Hussain, Muhammad Sharif, MudassarRaza, and MarryamMurtaza. "Robust Face Recognition Technique under Varying Illumination." Journal of Applied Research and Technology 13, no. 1 (2015): 97-105.
- Muhammad Sharif, SajjadMohsin, Rana Abdul Hanan, Muhammad YounasJaved, MudassarRaza, “3d Face Recognition Using Horizontal And Vertical Marked Strips”, Sindh University Research Journal (SURJ) 2011 Volume 43 No.01-A JUNE http://www.usindh.edu.pk/surj/261-vol-43-1a-2011
- Muhammad Sharif, SajjadMohsinand Muhammad YounasJaved,” A Survey: Face Recognition Techniques”, Research Journal of Applied Sciences, Engineering and Technology, Vol. 4. No. 23 pp 4979-4990, 2012
- Sharif M., Mohsin S., Jamal M. J. and Raza M., "Illumination Normalization Preprocessing for face recognition", IEEE International Conference on Environmental Science and Information Application Technology (ESIAT), , 44-47 (2010)
- Sharif M., Ayub K., Sattar D. and RAZA M., "Real Time Face Detection", Sindh Univ. Res. Jour. (Sci. Ser.) Vol. 44(4), 597-600,(2012) [54] Sharif, Muhammad, Farah Naz, MussaratYasmin, Muhammad AlyasShahid, and AmjadRehman. "Face Recognition: A Survey." Journal of Engineering Science & Technology Review 10, no. 2 (2017).
- Kherfi, M. L., D. Ziou, and A. Bernardi. "Image Retrieval from the World Wide Web: Issues, Techniques, and Systems." ACM Computing Surveys 36, no. 1 (March 2004): 35-67.
- Vasconcelos, Nuno. "From pixels to semantic spaces: Advances in content-based image retrieval." IEEE Computer Society, 2007: 20-26.
- Rasiwasia, N., N. Vasconcelos, and P.J. Moreno. "Query by Semantic Example." Proceedings 5th International Conference on Image and Video Retrieval. LNCS 4071, Springer, 2006. 51-60.
- Tombre, K., and B. Lamiroy. "Graphics recognition - from re-engineering to retrieval." Proceedings on Seventh International Conference on Document Analysis and Recognition. 2003. 148-155.
- Elhabian, S. Y., K. M. El-Sayed, and S. H. Ahmed. " Moving object detection in spatial domain using background removal techniques-state-of-art." Recent patents on Computer Science 1, no. 1 (2008): 32-54.
- Rusinol, M., and J. Llados. " Logo spotting by a bag-of-words approach for document categorization." 10th International Conference on In Document Analysis and Recognition, ICDAR'09. IEEE, 2009. 111-115.
- Shao, H., T. Svoboda1, T. Tuytelaars, and L.e. Van Gool. " HPAT indexing for fast object/scene recognition based on local appearance ." Image and Video Retrieva, 2003: 307-312.
- Hare, J. S., P. H. Lewis, P. G. Enser, and C. J. Sandom. "Mind the Gap: Another look at the problem of the semantic gap in image retrieval." 2006.
- Sebe, N., Q. Tian, E. Loupias, M. S. Lew, and T. S. Huang. "Evaluation of salient point techniques." Image and Vision Computing 21, no. 13 (2003): 1087-1095.
- Lowe, D. G. " Object recognition from local scale-invariant features." The Proceedings of the Seventh IEEE International Conference on Computer Vision. (IEEE) 2 (1999): 1150-1157.
- Idrissi, K., G. Lavoue, J. Ricard, and A. Baskurt. "Object of interest-based visual navigation, retrieval, and semantic content identification system." Computer Vision and Image Understanding 94, no. 1 (2004): 271-294.
- Wang, J. Z., J. Li, and G. Wiederhold. "SIMPLIcity: Semantics-sensitive integrated matching for picture libraries." Pattern Analysis and Machine Intelligence (IEEE) 23, no. 9 (2001): 947-963.
- Hoiem, D., R. Sukthankar, H. Schneiderman, and L. Huston. "Object-based image retrieval using the statistical structure of imagesn." Proceedings of IEEE Computer Society Conference In Computer Vision and Pattern Recognition, 2004. CVPR'04 . IEEE, 2004. 490.
- Swain, M.J., and D.H Ballard. "Color Indexing." International Journal of Computerl Vision 7, no. 1 (1991): 11-32.
- Yasmin, Mussarat, SajjadMohsin, IsmaIrum, and Muhammad Sharif. "Content based image retrieval by shape, color and relevance feedback." Life Science Journal 10, no. 4s (2013): 593-598.
- MussaratYasmin, Muhammad Sharif, and Muhammad AlyasShahid. "Content Based Image Retrieval Based on Color: A Survey." International Journal of Advanced Networking and Applications 7, no. 3 (2015): 2724.
- MussaratYasmin, Muhammad Sharif, IsmaIrum, WaqarMehmood, and Steven Lawrence Fernandes. "Combining Multiple Color And Shape Features For Image Retrieval."
- MussaratYasmin, Sharif Muhamma, MohsinSajjad, and IrumIsma. "Content Based Image Retrieval Using Combined Features of Shape, Color and Relevance Feedback." KSII Transactions on Internet & Information Systems 7, no. 12 (2013).
- MussaratYasmin, Muhammad Sharif, IsmaIrum, and SajjadMohsin. "An efficient content based image retrieval using EI classification and color features." Journal of applied research and technology 12, no. 5 (2014): 877-885.
- Foley, J.D., A.Van Dam, S.K. Feiner, and J.F. Hughes. Computer Graphics: Principles and Practice. 2nd. Addison-Wesley, 1990.
- Mathias, E. "Comparing the influence of color spaces and metrics in content-based image retrieval." Proceedings of International Symposium on Computer Graphics, Image Processing and Vision. 1998. 371-378.
- Flickner, M. et al.,. "Query by image and video content:The QBIC system." IEEE Computer Vision 28, no. 9 (1995): 23–32. [48]Deng, Y., B.S. Manjunath, C. Kenney, M.S. Moore, and H.D. Shin. "An efficient color representation for image retrieval." IEEE Transaction Image Processing 10, no. 1 (2001): 140-147.
- MussaratYasmin, Muhammad Sharif, and Sajjad Mohsin. "Powerful descriptor for image retrieval based on Angle Edge and Histograms." Journal of applied research and technology 11, no. 5 (2013): 727-732.
- Ogle, V.E., and M., Stonebraker. "Chabot: Retrieval from a relational database of images." IEEE Comput. 28, no. 9 (1995): 40-48.
- Valova, I., and B. Rachev. "Retrieval by Color Features in Image Databases." ADBIS, 2004.
- Iqbal, Q., and J.k. Aggarwal. "Combinig Structure, Color and texture forIimage Retrieval: A performance Evaluation." International Conference on Pattern Recognition. Canada, 2002. 438-443.
- Pass, G., and R. Zabith. "Comparing Images using Joint Histogram." Multimedia Systems 7 (1999): 234-240.
- Suhasini, P.S., Dr.K.Sri Rama Krishna, and Dr. I.V. Murali Krishna. "CBIR using Color Histogram Processing." Journal of Theoretical and Applied Information Technology 6, no. 1 (2005): 116-122.
- Konstantinidis, K., A. Gasteratos, and I. Andreadis. "Image Retrieval based on Fuzzy Color Histogram Processing." Optics Communication, 2005: 375-386.
- Liu, Guang-Hai, and Jing-Yu Yang. "Content-based image retrieval using color difference histogram." Pattern Recognition 46, no. 1 (January 2013): 188-198.
- Shaila, S.G., and A. Vadivel. "Block Encoding of Color Histogram for CBIR Applications." 2nd International Conference on Communication, Computing & Security. 2012. 526-533.
- Pass, C., and R. Zabith. "Histogram refinement for Content-based Image Retrieval." IEEE Workshop on Applications of Computer Vision. 1996. 96-102.
- Haung, J.et al. "Image Indexing using Color Correlogram." IEEE International Conference on Computer Vision and Pattern Recognition. 1997. 762-768.
- Gevers, Theo, and Arnold W.M. Smeulders. "Content-based image retrieval by viewpoint-invariant color indexing." Image and Vision Computing 17, no. 7 (May 1999): 475–488.
- Salvador, Elena, Andrea Cavallaro, and TouradjEbrahimi. "Cast shadow segmentation using invariant color features." Computer Vision and Image Understanding 95, no. 2 (August 2004): 238–259.
- Cavallaro, A., T. Ebrahimi, and Elena Salvador. "Shadow identification and classification using invariant color models." IEEE International Conference on Acoustics, Speech, and Signal Processing Proceedings. (ICASSP '01). 2001. 1545- 1548.
- Tsai, V.J.D. "A comparative study on shadow compensation of color aerial images in invariant color models." IEEE Transactions on Geoscience and Remote Sensing 44, no. 6 (2006): 1661- 1671.
- Howe, N.R., and D.P. Huttenlocher. "Integrating Color, Texture and Geometry fot Image Retrieval." Proceedings IEEE Conference on Computer Vision and Pattern Recognition. 2000. 61-64.
- Michele, S. "Content-Based Image Retrieval-Literature Survey." Multi-Dimensional Digital signal Processing, March 18, 2008.
- Lazebnik, S. "A sparse texture representation using local affine regions." Pattern Analysis and Machine Intelligence 27, no. 8 (2005): 1265-1278.
- Gevers, T. " Robust histogram construction from color invariants." Proceedings. Eighth IEEE International Conference on Computer Vision, 2001. ICCV 2001. IEEE, 2001. 615-620.
- Chatzichristofis, S. A., and Y. S. Boutalis. " Fcth: Fuzzy color and texture histogram-a low level feature for accurate image retrieval." Ninth International Workshop on Image Analysis for Multimedia Interactive Services, 2008. WIAMIS'08. IEEE, 2008. 191-196.
- Han, J, and K. K. Ma. "Fuzzy color histogram and its use in color image retrieval." IEEE Transactions on Image Processing 11, no. 8 (2002): 944-952.
- Shim, S. O., and T. S. Choi. " Image indexing by modified color cooccurrence matrix." IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP'03). IEEE, 2003. 577.
- Zhao, Q., and H. Tao. "Object tracking using color correlogram." 2nd Joint IEEE International Workshop on Visual Surveillance and Performance Evaluation of Tracking and Surveillance, 2005. IEEE, 2005. 263-270.
- Chan, Y. K., and C. C. Chang. "A color image retrieval method based on color moment and color variance of adjacent pixels." International journal of pattern recognition and artificial intelligence 16, no. 1 (2002): 113-125.
- Murching, A. M., A. Tabatabai, and T. Naveen. "Histogram-based segmentation of images and video via color moments." U.S. Patent No. 6,381,363, U.S. Patent and Trademark Office, Washington, DC, 2002.
- Wang, T., S. M. Hu, and J. G. Sun. "Image Retrieval Based on Color-Spatial Feature [J]." Journal of Software 10 (2002): 16.
- Lu, Tzu-Chuen, and Chin-Chen Chang. "Color image retrieval technique based on color features and image bitmap." Information Procesing and Management 43, no. 2 (March 2007): 461-472.
- Zhang, Dengsheng, and Guojun Lu. "Content-Based Shape Retrieval Using Different Shape Descriptors: A comparative Study." Gippsland School of Computing and Information Technology Monash University, Churchill, Victoria 3842, 2001.
- MussaratYasmin, Muhammad Sharif, and SajjadMohsin. "Image Retrieval Techniques Using Shapes of Object: A Survey." Sci. Int (Lahore) 25, no. 4 (2013): 723-729.
- MehwishREHMANM. SHARIF, and M. RAZA. "Shape Features Extraction Method for Content based Image Retrieval." Sindh University Research Journal-SURJ (Science Series) 48, no. 1 (2016).
- Latecki, L.J., and R. Lakamper. "Shape Similarity measure based on correspondence of visual parts." IEEE Trans. Pattern Analysis and Machine Intelligence 22, no. 10 (2000): 1185-1190.
- Belongie, S., J. Malik, and J. Puzicha. "Shape matching and object recognition using shape contexts." IEEE Trans. Pattern Analysis and Machine Intelligence 24, no. 4 (2002): 509-522.
- Petrakis, E.G.M., A. Diplaros, and E. Milios. "Matching and retrieval of distorted and occluded shapes using dynamic programming." IEEE Trans. Pattern Analysis and Machine Intelligence 24, no. 4 (2002): 509=522.
- Chu, C.N., S.Y. Kim, J.M. Lee, and B.H. Kim. "Feed-Rate Optimization of Ball End Milling Considering Local Shape Features." CIRP Annals - Manufacturing Technology 46, no. 1 (1997): 433–436.
- Brandt, S. "Statistical shape features in content-based image retrieval." Pattern Recognition Proceedings. 15th International Conference on Pattern Recognition. 2000. 1062- 1065.
- Weickert, J., S. Ishikawa, and A. Imiya. "Linear Sacle Space Has Been Proposed in Japan." Journal of Math,Imaging and vision 10 (1999): 237-252.
- Shih, Timothy K., and Lawrence Y. Deng. "Content-based Image Retrieval with Intensive Signature via Affine Invariant Transformation." Proceedings in International Symposium on Multimedia Software Engineering. 2000. 393-400.
- Gevers, T., and A.W.M. Smeulders. "Content-based image retrieval by View-Point-Invariant Image Indexing." Image and Vision Computing 17, no. 7 (1999).
- Gevers, T., and A.W.M. Smeulders. "PictoSeek: Combining Color and Shape Invariant Features for the Image Retrieval." IEEE Trans. Image Processing 9, no. 1 (2000): 102-119.
- Lowe, D.G. "Object recognition from local scale-invariant features." Proceedings of the Seventh IEEE International Conference on Computer Vision. 1999. 1150- 1157.
- Esperanca, C., and H. Samet. "A Differential Code for Shape Representation in Image Database Applications." Proceedings International Conference Image Processing. 1997.
- Mehtre, Babu M., and Mohan S .Kankanhall. "Shape measures for CBIR: A comparison." Information Processing & Management (Elsevier Science) 33, no. 3 (1997): 319-337.
- Bimbo, Del, A., and P. Pala. "Visual Image Retrieval by Elastic Matching of User Sketches." IEEE Trans. Pattern Analysis and Machine Intelligence 19, no. 2 (1997): 121-132.
- Pala, P., and S. ,Santini. "Image retrieval by shape and texture." Pattern Recognition 32, no. 3 (1999): 517–527.
- Unser, M.,,Aldroubi A., and M. Eden. " Fast B-spline transforms for continuous image representation and interpolation." IEEE Transactions on Pattern Analysis and Machine Intelligence 13, no. 3 (1991): 277-285.
- Haralick, R. "Statistical and structural approaches to texture." IEEE Proceedings 67, no. 5 (1979): 786-804.
- Li, J., A. Najmi, and R.M. Gray. "Image Classification by a two-dimensional hidden markov model." IEEE Trans.Signal Processing 48, no. 2 (2000): 527-533.
- Davis, L., S. Johns, and J. Aggarwal. "Texture Analysis using generalized cooccurence matrices." IEEE Trans. Pattern Analysis and Machine Intelligence PAMI-1, no. 3 (July 1979): 251-259.
- Unser, M., and M. Eden. "Multiresolution feature extraction and selection for feature segmentation." IEEE Trans. Pattern Analysis and Machine Intelligence 11, no. 7 (July 1989): 173-188.
- Maragos, P. "Pattern Spectrum and Multi-Scale shape representation." IEEE Trans. Pattern Analysis and Machine Learning 11, no. 7 (1989): 701-716.
- Wang, L., and D.C. He. "Texture Classification using texture spectrum." Pattern Recognition 23, no. 8 (1990): 905-910.
- MussaratYasmin, SajjadMohsin, and Muhammad Sharif. "Intelligent image retrieval techniques: a survey." Journal of applied research and technology 12, no. 1 (2014): 87103.
- Manjunath, B., and W. Ma. "Texture features for browsing and retrieval of image data." IEEE Trans. Pattern Analysis and Machine Intelligence 18, no. 8 (1996): 837-842.
- Unser, M. "Texture Classification and Segmentation using Wavelet Frames." IEEE Trans. Image Process. 4, no. 11 (1995): 1549– 1560.
- Oraintara, S., and T. T. Nguyen. "Using Phase and Magnitude Information of the Complex directional Filter Bank for Texture Image Retrieval." Proceedings IEEE Internatinal Conference on Image Processing (October 2007): 61-64.
- Sastry, Challa S., M. Ravindranath, Arun K. Pujari, and B.L. Deekshatulu. "A modified Gabor function for CBIR." Pattern Recognition Letters 28, no. 2 (2007): 293-300.
- Kutter, M., and S. Winkler. "A vision-based masking model for spread-spectrum image watermarking." Image Processing 11, no. 1 (2002): 16- 25.
- Haralick, R., K. Shanmugam, and L. Dinstein. "Texture features for image classification." IEEE Trans. Systems, Man, and Cybernetics 3 (1973): 610-621.
- Daubechies, L. "The wavelet transform, time-frequency localization and signal analysis." IEEE Trans. Information Theory 36, no. 5 (1990): 961-1005.
- Chang, T., and C.J. Kuo. "Texture analysis and classification with tree-structured wavelet transform." IEEE Trans. Pattern Analysis and Machine Intelligence 2, no. 4 (1993): 429-441.
- Bovik, A.C., M. Clark, and W.S. Geisler. "Multichannels texture analysis using localized spatial filters." IEEE Trans. Pattern Analysis and Machine Learning 12, no. 1 (January 1990): 55-73.
- Kandaswamy, Umasankar, Stephanie A.Schuckers, and Donald Adjeroh. "Comparison of Texture Analysis Schemes under Non-ideal Conditions." IEEE Trans. on Image Processing 20, no. 8 (August 2011): 2260-2276.
- Chantler, M.J. "The effect of variation in illuminant direction on texture classification." 1994.
- Chantler, Mike, GedMcGunnigle, Andreas Penirschke, and Maria Petrou. "Estimating Lighting Direction and Classifying Textures." In Proceedings BMVC. 2002. 737-746.
- Lazebnik, S. "A sparse texture representation using local affine regions." Pattern Analysis and Machine Intelligence 27, no. 8 (2005): 1265-1278.
- Sato, Jun, and Roberto Cipolla. "Extracting the affine transformation from texture moments." Computer Vision 801 (1994): 165-172.
- Interrante, Victoria, and Sunghee Kim. "Investigating the effect of texture orientation on the perception of 3D shape." Proceedings in SPIE Human Vision and Electronic Imaging VI. 2001. 330.
- Chantler, M.J., M. Petrou, A. Penirsche, M. Schmidt, and G. McGunnigle. "Classifying surface texture while simultaneously estimating illumination direction." International Journal of Computer Vision 62, no. 1 (2005): 83-96.
- Ojala, T., M. Pietikainen, and T. Maenpaa. "Multiresolution gray-scale and rotation invariant texture classification with local binary patterns." IEEE Trans. Pattern and Machine Learning 24, no. 7 (July 2002): 971-987.
- Leung, T., and J. Malik. "Representing and recognizing the visual appearance of materials using three-dimensional textons." International Journal of Computer Vision 43, no. 1 (2001): 29-44.
- Hahjidemetriou, E., M. Grossberg, and S. Nayar. "Multiresolution histograms and their use for recognition." IEEE Trans. Pattern Analysis and Machine Intelligence 26, no. 7 (2004): 831-847.
- Malik, J., and R. Rosenholtz. "Computing Local Surface Orientation and Shape from Texture for Curved Surfaces." International Journal of Computer Vision 23, no. 2 (June 1997): 149-168.
- Texture features for browsing and retrieval of image data. Manjunath, B. and Ma, W. 8, 1996, IEEE Trans. Pattern Analysis and Machine Intelligence, Vol. 18, pp. 837-842.
- Ponce, J., S. Lazebnik, and C. Schmid. "A maximum entropy framework for part-based texture and object recognition." Computer Vision, ICCV Tenth IEEE International Conference on Computer Vision. 2005. 832-838.
- Schaffalitzky, F., and A. Zisserman. "ViewPoint invariant texture matching and wide baseline stereo." Proceedings IEEE ICCV, 2001.
- Ponce, J., Lazebnik, S. andSchmid,"Affine-invariant local descriptors and neighborhood statistics for texture recognition." Computer Vision Proceedings. 9th IEEE International Conference. Oct. 2003. 649- 655.
- Porter, R., and N. Canagarajah. "Robust rotation-invariant texture classification: Wavelet, Gabor filter and GMRF based scehemes." IEEE Process Vision Image Signal Process 144, no. 180 (June 1997).
- Laine, A., and J. Fan. "Texture Classification by Wavelet Packet Signature." IEEE Trans. Pattern Analysis and Machine Intelligence 15, no. 11 (1993): 1186-1191.
- Daubechies, J. Ten Lectures on Wavlets. Philadelphia: SIAM, 1992.
- Chui, C.K., L. Montefusco, and L. Puccio. Wavelets: Theory,Algorithmsand applications. Academic Press, 1994.
- Randen, T., and J.H. Husoy. "Filtering for Texture Classification: A Comparative Study." IEEE Trans. Pattern Analysis and Machine Intelligence. 1999. 291-310.
- Coifman, R.R., and M.V. Wickerhauser. "Best-adapted wavelet packet bases." Yale University preprint, 1990.
- Coifman, Ronald R., Yves. Meyer, Steven. Quake, and M. Victor. Wickerhauser. "Signal processing and compression with wavelet packets." Wavelets and Their Applications. 1994. 363-379.
- Daubechies, I. "Orthonormal bases of compactly supported wavelets." Communication Pure Applied Mathematics 41 (1988): 909–996.
- Ramchandran, K., and M. Vetterli. "Best wavelet packet bases in a rate-distortion sense." Image Processing, IEEE Transactions 2, no. 2 (1993): 160- 175.
- Banerjee, Minakshi, and Malay K. Kundu. "Content-Based Image Retrieval Using Wavelet Packets and Fuzzy Spatial Relation." ICVGIP (Springer-Verlag Berlin Heidelberg), 2006: 861-871.
- Mallat, S. "A theory for multi-resolution signal decomposition." IEEE Trans. on Pattern Analysis and Machine Intelligence 11, no. 7 (1989): 674-693.
- M.Acharya, and M.K.Kundu. "An Adaptive approach to unsupervised texture segmentation using m-band wavelet transform." Signal Processing 81 (2001): 1337-1356.
- M.A.Hoang, J.M. Geusebroek, and A.W.M.Smeulders. "Color texture measurement and segmentation." Signal Processing 85 (2005): 265-275.
- Rao, R.M., and A.S. Bopardikar. Wavelet Transforms Introduction to Theory and Applications. Singapore: Pearson Education, 2002.
- Cullen, J.F., J.J Hull, and P.E. Hart. "Document Iamge Database Retrieval and Browsing Using Texture Analysis." Proceedings Fourth International Conference Document Analysis and Recognition. 1997. 718-721.
- Ma, W.Y., and B.S. Manjunath. "Edge Flow: A Framework of Boundary Detection and Image Segmentation." Proceedings Computer Vision and Pattern Recognition. 1997. 744-749.
- Li, C.S, and V. Castelli. "Deriving Texture Feature Set for Content-Based Image Retrieval of Satellite Image Database." Proceedings International Conference on Image Processing. 1997.
- Wang, Xing-Yuan, Zhi-Feng Chen, and Jiao-Jiao Yun. "An effective method for color image retrieval based on texture." (Computer Standards & Interfaces) 34, no. 1 (2012): 31-35.
- Dana, Kristin J., and Shree K. Nayar. "Correlation Model for 3D Texture." International Conference on Computer Vision. 1999. 1061-1067.
- MussaratYasmin, Muhammad Sharif, and SajjadMohsin. "Use of Low Level Features for Content Based Image Retrieval: Survey." Research Journal of Recent Sciences
- MehwishRehman, Muhammad Iqbal, Muhammad Sharif, and MudassarRaza. "Content based image retrieval: survey." World Applied Sciences Journal 19, no. 3 (2012): 404-412.
Abstract Views: 275
PDF Views: 0