Open Access Open Access  Restricted Access Subscription Access

Traffic Control on Cruise Ships for Autonomous Vehicles Applying Artificial Neural Network


Affiliations
1 Department of Systems and Computation, Villahermosa Institute of Technology, Mexico
2 Department of Industrial Engineer, Villahermosa Institute of Technology, Mexico
3 Department of Telecom, PEMEX, Mexico
 

The Artificial Neural Networks, from their origin, are oriented to solve problems in the same way as the human brain would. They use real data for their training and, through various algorithms, they seek to reach an optimal solution. In the present article the design of a Neuronal Artificial Network of multilayer perceptron type (PMC) for the control of autonomous vehicles in cruises is proposed. The training of the network was carried out applying Hyperbolic Tangent Sigmoid, Hyperbolic Log-Sigmoid and finally the linear functions.

Keywords

Neural Network, Robotics, Multilayer Perceptron, Automation.
User
Notifications
Font Size

  • J. R. Hilera Gonzalez, Redes neuronales artificiales: fundamentos, modelos y aplicaciones. Mexico, 2000.
  • H. Delgado, A. Pedro, G. Arestuche, y L. Roberto, “Análisis neuronal de variables fusificadas para la caracterización y determinación del rating de un puente de carretera”, 2010.
  • L. F. . Torres Alvarez, Nelson; Hernandez, Cesar; Pedraza, “Neural networks and prediction of traffic”, Tecnura, vol. V, núm. 29, pp. 90–97, 2011.
  • V. Milanés, E. Onieva, J. Pérez, y T. D. P. C. González, “Control de Velocidad basado en Lógica Borrosa para Entornos Urbanos Congestionados”, Revista Iberoamericana de Automática e Informática Industrial RIAI, vol. 6, núm. 4, pp. 61–68, 2009.
  • A. Felipe y A. Gil, “Sistema de Toma de Decisiones Basado en Modelo para Cambios de Carril en Vehiculos Autonomos”, 2016.
  • A. Gomez Torres, “Control de crucero cooperativo mediante comunicaciones V2X”, Universidad Politécnica de Madrid, 2018.
  • T. M. Sentinel, “‘Phantom Auto’ will tour city”, The Milwaukee Sentinel, Ney York, p. 14, 08-dic1926.
  • O. Cervantes y D. Báez, Matlab con Aplicaciones a la Ingeniería, Física y Finanzas, 2a ed. México: Alfaomega, 2012.
  • J. E. Universitat Autònoma de Barcelona. Grupo de Investigación “Didáctica y Multimedia.” y J. H. Ruiz F., Didáctica, innovación y multimedia., núm. 30. Universidad Autònoma de Barcelona, Facultad de Educación, Departamento de Pedagogía Aplicada, 2014.
  • J. Reyna, “Diseño y construcción de un microbot seguidor de linea controlado por un microcontrolador PIC16F84”, Mendoza, 2009.
  • P. Ponce, Inteligencia Artificial con Aplicaciones a la Ingeniería, 1a ed. Alfaomega, 2010.

Abstract Views: 231

PDF Views: 0




  • Traffic Control on Cruise Ships for Autonomous Vehicles Applying Artificial Neural Network

Abstract Views: 231  |  PDF Views: 0

Authors

Ezequiel Gomez Dominguez
Department of Systems and Computation, Villahermosa Institute of Technology, Mexico
Jorge Cein Villanueva Guzman
Department of Systems and Computation, Villahermosa Institute of Technology, Mexico
Victor Manuel Arias Peregrino
Department of Systems and Computation, Villahermosa Institute of Technology, Mexico
Julio Cesar Romellon Cerino
Department of Industrial Engineer, Villahermosa Institute of Technology, Mexico
Juan Carlos Arias Peregrino
Department of Telecom, PEMEX, Mexico

Abstract


The Artificial Neural Networks, from their origin, are oriented to solve problems in the same way as the human brain would. They use real data for their training and, through various algorithms, they seek to reach an optimal solution. In the present article the design of a Neuronal Artificial Network of multilayer perceptron type (PMC) for the control of autonomous vehicles in cruises is proposed. The training of the network was carried out applying Hyperbolic Tangent Sigmoid, Hyperbolic Log-Sigmoid and finally the linear functions.

Keywords


Neural Network, Robotics, Multilayer Perceptron, Automation.

References