Open Access Open Access  Restricted Access Subscription Access

Deep Learning Techniques for Improving Breast Cancer Detection and Diagnosis


Affiliations
1 Department of Information Systems center Egyptian Organization for Standardization & Quality, Egypt
 

In this paper, we aim to introduce a survey on the applications of deep learning for breast cancer detection and diagnosis to provide an overview of the progress in this field. In the survey, we firstly provide an overview on deep learning and the popular architectures used for breast cancer detection and diagnosis. Especially we present four popular deep learning architectures, including convolutional neural networks, fully convolutional networks, auto encoders, and deep belief networks in the survey. Secondly, we provide a survey on the studies exploiting deep learning for breast cancer detection and diagnosis.



Keywords

Deep Learning (DL), Breast Cancer, Breast Cancer Detection.
User
Notifications
Font Size

  • WHO, in: Latest World Cancer Statistics Global Cancer Burden Rises to 14.1 million New Cases in 2021: Marked Increase in Breast Cancers Must Be Addressed, World Health Organization, 2021, p. 12.
  • F. Bray, et al., Global estimates of cancer prevalence for 27 sites in the adult population in 2008, Int. J. Cancer 132 (5) (2013) 1133–1145.
  • M. Schneider , M. Yaffe ,Better detection: improving our chances, Digital Mammography: 5th International Workshop on Digital Mammography, 2000.
  • H. Li , et al. , Computerized radiographic mass detection. II. Decision support by featured database visualization and modular neural networks, IEEE Trans. Med. Imaging 20 (4) (2001) 302–313.
  • I. Leichter , et al. , Optimizing parameters for computeraided diagnosis of mi- crocalcifications at mammography, Acad. Radiol. 7 (6) (20 0 0) 406–412.
  • A.K. Mohanty , M.R. Senapati , S.K. Lenka , RETRACTED ARTICLE: an improved data mining technique for classification and detection of breast cancer from mammograms, Neural Comput. Appl. 22 (1) (2013) 303–310 .
  • J. Tang , et al. , Computer-aided detection and diagnosis of breast cancer with mammography: recent advances, IEEE Trans. Inf. Technol. Biomed. 13 (2) (2009) 236– 251.
  • A . Horsch , A . Hapfelmeier , M. Elter , Needs assessment for next generation computer-aided mammography reference image databases and evaluation studies, Int. J. Comput. Assisted Radiol. Surg. 6 (6) (2011) 749 .
  • A. Sadaf , et al. , Performance of computer-aided detection applied to full-field digital mammography in detection of breast cancers, Eur. J. Radiol. 77 (3) (2011) 457–461.
  • B. van Ginneken , et al. , Comparing and combining algorithms for computer-aided detection of pulmonary nodules in computed tomography scans: the ANODE09 study, Med. Image Anal. 14 (6) (2010) 707–722.
  • K. Doi , Computer-aided diagnosis in medical imaging: historical review, cur- rent status and future potential, Comput. Med. Imaging Graph. 31 (4) (2007) 198–211.
  • K. Doi , Diagnostic imaging over the last 50 years: research and development in medical imaging science and technology, Phys. Med. Biol. 51
  • (2006) R5 . 13. M.L. Giger , H.P. Chan , J. Boone , Anniversary paper: history and status of CAD and quantitative image analysis: the role of medical physics and AAPM, Med. Phys. 35 (12) (2008) 5799–5820.
  • Dhungel N, Carneiro G, Bradley AP. Automated mass detection in mammograms using cascaded deep learning and random forests. in digital image computing: techniques and applications (DICTA), 2015 international conference on: IEEE; 2015.
  • Dhungel N, Carneiro G, Bradley AP. The automated learning of deep features for breast mass classification from mammograms. In MICCAI. 2; 2016.
  • Fenton JJ, Taplin SH, Carney PA, Abraham L, Sickles EA, D’Orsi C, et al. Influence of computer-aided detection on performance of screening mammography. N Engl J Med 2007; 356: 1399–409. doi: https:// doi.org/ 10. 1056/ NEJMoa066099
  • Carneiro G, Nascimento JC, Bradley AP. Unregistered multiview mammogram analysis with pre-trained deep learning models. In MICCAI. 3; 2015.
  • Jadoon MM, Zhang Q, Haq IU, Butt S, Jadoon A.Three-class mammogram classification based on descriptive CNN features. Biomed Res Int 2017; 2017: 1–11. doi: https:// doi. org/ 10. 1155/ 2017/ 3640901
  • Hussein S, Cao K, Song Q, Bagci U. Risk stratification of lung nodules using 3D CNN-based multi-task learning. In: International conference on information processing in medical imaging; 2017. pp. 249–60.
  • Lane ND, Bhattacharya S, Georgiev P, Forlivesi C, Kawsar F. An early resource characterization of deep learning on wearables, smartphones and internetofthings devices. In: Proceedings of the 2015 international workshop on internet of things towards applications: ACM; 2015.
  • Luckow A. Deep learning in the automotive industry: applications and tools. In: Big data (Big Data), 2016 IEEE international conference on: IEEE; 2016.
  • Min S, Lee B, Yoon S. Deep learning in bioinformatics. Brief Bioinform 2016; 31: bbw068. doi: https:// doi.org/ 10. 1093/ bib/ bbw068
  • Nalbach O, Arabadzhiyska E, Mehta D, Seidel H-P, Ritschel T. Deep shading: convolutional neural networks for screen space shading. In: Computer graphics forum. 36. Wiley Online Library; 2017. pp. 65–78. doi: https:// doi. org/ 10. 1111/ cgf. 13225
  • LeCun, Y.; Bengio, Y.; Hinton, G. Deep Learning. Nature 2015, 521 (7553), 436−444.
  • Bengio, Y.; Delalleau, O.; Simard, C. Decision Trees Do Not Generalize To New Variations. Comput. Intell. 2010, 26 (4), 449−467.
  • Oquab, M.; Bottou, L.; Laptev, I.; Sivic, J. Learning and Transferring Mid-Level Image Representations Using Convolutional Neural Networks. Cvpr 2014, 1717−1724.
  • Mnih, V.; Kavukcuoglu, K.; Silver, D.; Rusu, A.; Veness, J.; Bellemare, M.; Graves, A.; Riedmiller, M.; Fidjeland, A.; Ostrovski, G.; Petersen, S.; Beattie, C.; Sadik, A.; Antonoglou, I.; King, H.; Kumaran, D.; Wierstra, D.; Legg, S.; Hassabis, D. Human-Level Control through Deep Reinforcement Learning. Nature 2015, 518 (7540), 529−533.
  • Gatys, L. A.; Ecker, A. S.; Bethge, M.; Sep, C. V. A Neural Algorithm of Artistic Style; pp 3 −7.
  • Schmidhuber, J. Deep Learning in Neural Networks: An Overview. Neural Networks 2015, 61, 85−117.
  • Solovyeva, K. P.; Karandashev, I. M.; Zhavoronkov, A.; DuninBarkowski, W. L. Models of Innate Neural Attractors and Their Applications for Neural Information Processing. Front. Syst. Neurosci. 2016, DOI: 10.3389/fnsys.2015.00178.
  • Baralis, E.; Fiori, A. Exploring Heterogeneous Biological Data Sources. In 2008 19th International Conference on Database and Expert Systems Applications; IEEE: 2008; pp 647−651.
  • Bengio, Y. , Simard, P. , Frasconi, P. , 1994. Learning long-term dependencies with gra- dient descent is difficult. IEEE Trans. Neural Netw. 5, 157–166 .
  • Hochreiter, S. , Schmidhuber, J. , 1997. Long short-term memory. Neural Comput. 9 (8), 1735–1780.
  • Cho, K., Van Merriënboer, B., Gulcehre, C., Bahdanau, D., Bougares, F., Schwenk, H., Bengio, Y., 2014. Learning phrase representations using RNN encoderdecoder for statistical machine translation. arxiv: 1406.1078 .
  • Stollenga, M.F. , Byeon, W. , Liwicki, M. , Schmidhuber, J. , 2015. Parallel multi-dimen- sional LSTM, with application to fast biomedical volumetric image segmenta- tion. In: Proceedings of the Advances in Neural Information Processing Systems, pp. 2998– 3006 .
  • Vincent, P. , Larochelle, H. , Lajoie, I. , Bengio, Y. , Manzagol, P.-A. , 2010. Stacked de- noising autoencoders: learning useful representations in a deep network with a local denoising criterion. J. Mach. Learn. Res. 11, 3371–3408 .
  • Liao, S., Gao, Y., Oto, A., Shen, D., 2013. Representation learning: A unified deep learning framework for automatic prostate mr segmentation. In: Pro- ceedings of the Medical Image Computing and Computer-Assisted Interven- tion. In: Lecture Notes in Computer Science, 8150, pp. 254–261. doi: 10.1007/ 978- 3- 642- 40763- 5 _ 32 .
  • Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G. S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mane, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viegas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X., 2016. Ten- sorflow: large-scale machine learning on heterogeneous distributed systems . arxiv: 1603.04467 .
  • Bastien, F. , Lamblin, P. , Pascanu, R. , Bergstra, J. , Goodfellow, I. , Bergeron, A. , Bouchard, N. , WardeFarley, D. , Bengio, Y. ,2012. Theano: new features and speed improvements. In: Proceedings of the Deep Learning and Unsupervised Feature Learning NIPS 2012 Workshop.
  • Collobert, R. , Kavukcuoglu, K. , Farabet, C. , 2011. Torch7: a matlab-like environment for machine learning. In: Proceedings of the Advances in Neural Information Processing Systems.
  • Abreu PH, Santos MS, Abreu MH, Andrade B, Silva DC. Predicting breast cancer recurrence using machine learning techniques. ACM Computing Surveys 2016; 49: 1–40. doi: https:// doi. org/ 10. 1145/ 2988544
  • Akay MF. Support vector machines combined with feature selection for breast cancer diagnosis. Expert Syst Appl 2009; 36: 3240–7. doi: https:// doi. org/ 10. 1016/ j. eswa. 2008. 01. 009
  • Al-Ghaib H, Wang Y, Adhami R. A new machine learning algorithm for breast andpectoral muscle segmentation. Eur J Adv Eng Technol 2015; 2: 21–9.
  • Begum S, Bera SP, Chakraborty D, Sarkar R. Breast cancer detection using feature selection and active learning. In: Computer, communication and electrical technology: proceedings of the international conference on advancement of computer communication and electrical technology (ACCET 2016), West Bengal, India, 21-22 October 2016: CRC Press; 2017. pp. 43–8.
  • Cruz JA, Wishart DS. Applications of machine learning in cancer prediction and prognosis. Cancer Inform 2006; 2:59.doi:https://doi.org/10.1177/117693510600200030
  • Durai SG, Ganesh SH, Christy AJ. Prediction of breast cancer through classification algorithms: a survey. 9: International Science Press; 2016. pp. 359–65.
  • Huang MW, Chen CW, Lin WC, Ke SW, Tsai CF. SVM and SVM ensembles in breast cancer prediction.
  • PLoS One 2017; 12: e0161501.doi: https://doi.org/10.1371/ journal. pone. 0161501
  • Kharel N, Alsadoon A, Prasad PWC, Elchouemi A. Early diagnosis of breast cancer using contrast limited adaptive histogram equalization (CLAHE) and morphology methods. In: Information and communication systems (ICICS), 2017 8th international conference on: IEEE; 2017.
  • Kourou K, Exarchos TP, Exarchos KP, Karamouzis MV, Fotiadis DI. Machine learning applications in cancer prognosis and prediction. Comput Struct Biotechnol J 2015; 13: 8–17. doi: https:// doi. org/ 10.1016/ j. csbj. 2014. 11. 005
  • Qayyum A, Basit A. Automatic breast segmentation and cancer detection via SVM in mammograms. In: Emerging technologies (ICET), 2016 international conference on: IEEE; 2016.
  • Shajahaan SS, Shanthi S, ManoChitra V. Application of data mining techniques to model breast cancer data. IJETAE 2013; 3: 362–9. 25. Xi X, Shi H, Han L, Wang T, Ding HY, Zhang G, et al. Breast tumor segmentation with prior knowledge learning. Neurocomputing 2017; 237: 145–57. doi: https:// doi. org/ 10. 1016/ j. neucom. 2016. 09. 067
  • Xie W, Li Y, Ma Y. Breast mass classification in digital mammography based on extreme learning machine. Neurocomputing 2016; 173: 930–41. doi: https:// doi.org/ 10. 1016/ j. neucom. 2015. 08. 048
  • Ertosun MG, Rubin DL. Probabilistic visual search for masses within mammography images using deep learning. Paper presented at the IEEE International Conference on Bioinformatics and Biomedicine (BIBM).2015.
  • Longo R, Tonutti M, Rigon L, Arfelli F, Dreossi D, Quai E, et al. Clinical study in phase-contrast mammography: image-quality analysis. Philos Trans Royal Soc London A. 2014;372:20130025.
  • Bird RE, Wallace TW, Yankaskas BC. Analysis of cancers missed at screening mammography. Radiology. 1992;184:613–617.
  • Boyd NF, Guo H, Martin LJ, Sun L, Stone J, Fishell E, et al. Mammographic density and the risk and detection of breast cancer. N Engl J Med. 2007;356:227–236.
  • Kerlikowske K, Carney PA, Geller B, Mandelson MT, Taplin SH, Malvin K, et al. Performance of screening mammography among women with and without a firstdegree relative with breast cancer. Ann Intern Med. 2000;133:855–863.
  • Maskarinec G, Pagano I, Chen Z, Nagata C, Gram IT. Ethnic and geographic differences in mammographic density and their association with breast cancer incidence. Breast Cancer Res Treat. 2007;104:47–56.
  • Nelson HD, Tyne K, Naik A, Bougatsos C, Chan BK, Humphrey L, et al. Screening for breast cancer: an update for the US Preventive Services Task Force. Ann Intern Med. 2009;151:727–737.
  • Dinnes J, Moss S, Melia J, Blanks R, Song F, Kleijnen J. Effectiveness and cost-effectiveness of double reading of mammograms in breast cancer screening: findings of a systematic review. Breast. 2001;10:455–463.
  • Warren R, Duffy W. Comparison of single reading with double reading of mammograms, and change in effectiveness with experience. Brit J Radiol.1995;68(813):958–962.
  • Balleyguier C, Kinkel K, Fermanian J, Malan S, Djen G, Taourel P, et al. Computer-aided detection (CAD) in mammography: does it help the junior or the senior radiologist? Eur J Radiol. 2005;54:90– 96.
  • Sanchez Gómez S, Torres Tabanera M, Vega Bolivar A, Sainz Miranda M, Baroja Mazo A, Ruiz Diaz M, et al.Impact of a CAD system in a screen-film mammography screening program: A prospective study. Eur J Radiol. 2011;80:e317–e321.
  • Malich A, Azhari T, Böhm T, Fleck M, Kaiser W. Reproducibility - an important factor determining the quality of computer aided detection (CAD) systems. Eur J Radiol. 2000;36:170–174.
  • Marx C, Malich A, Facius M, Grebenstein U, Sauner D, Pfleiderer SOR, et al. Are unnecessary follow-up procedures induced by computer-aided diagnosis (CAD) in mammography? Comparison of mammographic diagnosis with and without use of CAD. Eur J Radiol.2004;51:66–72.
  • Gilbert FJ, Astley SM, Gillan MG, Agbaje OF, Wallis MG, James J, et al. Single reading with computer-aided detection for screening mammography. N Engl J Med.2008;359:1675–1684.
  • Freer TW, Ulissey MJ. Screening mammography with computer-aided detection: Prospective study of 12,860 patients in a community breast center. Radiology. 2001;220:781–786.
  • Mousa R, Munib Q, Moussa A. Breast cancer diagnosis system based on wavelet analysis and fuzzy-neural. Exp Syst Applicat. 2005;28:713–723.
  • 105. Nunes FL, Schiabel H, Goes CE. Contrast enhancement in dense breast images to aid clustered microcalcifications detection. J Digital Imaging. 2007;20:53–66.
  • Rizzi M, D’Aloia M, Castagnolo B. Health care CAD systems for breast microcalcification cluster detection. J Med Biol Eng. 2012;32:147–156.
  • Islam MJ, Ahmadi M, Sid-Ahmed MA. Computer-aided detection and classification of masses in digitized mammograms using artificial neural network. Adv Swarm Intell. 2010;2010:327–334.
  • Kozegar E, Soryani M, Minaei B, Domingues I. Assessment of a novel mass detection algorithm in mammograms. J Cancer Res Ther. 2013;9(4):592–600.
  • Oliver A, Freixenet J, Martí J, Pérez E, Pont J, Dentonc ERE, et al. A review of automatic mass detection and segmentation in mammographic images. Med Image Anal. 2010;14:87–110.
  • Jesneck JL, Lo JY, Baker JA. Breast mass lesions: computer-aided diagnosis models with mammographic and sonographic descriptors. Radiology. 2007;244:390– 398.
  • Berg WA, Blume JD, Cormack JB, Mendelson EB, Lehrer D, Böhm-Vélez M, et al. Combined screening with ultrasound and mammography vs mammography alone in women at elevated risk of breast cancer. JAMA. 2008;299:2151–2163.
  • Corsetti V, Houssami N, Ghirardi M, Ciatto S. Evidence of the effect of adjunct ultrasound screening in women with mammography-negative dense breasts: Interval breast cancers at 1 year follow-up. Eur J Cancer. 2011;47:1021–1026.
  • Drukker K, Horsch KJ, Pesce LL, Giger ML. Interreader scoring variability in an observer study using dual-modality imaging for breast cancer detection in women with dense breasts. Acad Radiol. 2013;20:847– 853. [PMC free article] [PubMed]
  • Nothacker M, Duda V, Hahn M, Warm M, Degenhardt F, Madjar H, et al. Early detection of breast cancer: benefits and risks of supplemental breast ultrasound in asymptomatic women with mammographically dense breast tissue. A systematic review. BMC Cancer. 2009;9:335.
  • Ohuchi N, Suzuki A, Sobue T, Kawai M, Yamamoto S, Zheng YF, et al. Sensitivity and specificity of mammography and adjunctive ultrasonography to screen for breast cancer in the Japan Strategic Anticancer Randomized Trial (J-START): a randomised controlled trial. Lancet. 2016;387(10016):341–348.
  • Scheel JR, Lee JM, Sprague BL, Lee CI, Lehman CD. Screening ultrasound as an adjunct to mammography in women with mammographically dense breasts. Am J Obstetr Gynaecol. 2015;212:9– 17. [PMC free article] [PubMed]
  • Svensson W. A review of the current status of breast ultrasound. Eur J Ultrasound. 1997;6:77– 101.
  • Chen CM, Chou YH, Han KC, Hung GS, Tiu CM, Chiou HJ, et al. Breast lesions on sonograms: computeraided diagnosis with nearly setting-independent features and artificial neural networks. Radiology. 2003;226:504–514.
  • Sahiner B, Chan HP, Roubidoux MA, Hadjiiski LM, Helvie MA, Paramagul C, et al. Malignant and benign breast masses on 3D US volumetric images: effect of computer-aided diagnosis on radiologist accuracy. Radiology. 2007;242:716–724.
  • Costantini M, Belli P, Lombardi R, Franceschini G, Mulè A, Bonomo L. Characterization of solid breast masses use of the sonographic breast imaging reporting and data system lexicon. J Ultrasound Med. 2006;25:649–659.
  • Drukker K, Giger M, Horsch K, Kupinski MA, Vyborny CJ, Mendelson EB. Computerized lesion detection on breast ultrasound. Med Phys. 2002;29:1438–1446.
  • Huang YL, Lin SH, Chen DR. Computer-aided diagnosis applied to 3-D US of solid breast nodules by using principal component analysis and image retrieval. Paper presented at the 27th Annual International Conference of the Engineering in Medicine and Biology Society IEEE-EMBS.2005
  • Kim JH, Cha JH, Kim N, Chang Y, Ko M-S, Choi Y-W, et al. Computer-aided detection system for masses in automated whole breast ultrasonography: development and evaluation of the effectiveness. Ultrasonography. 2014;33:105–115.
  • Chabi ML, Borget I, Ardiles R, Aboud G, Boussouar S, Vilar V, et al. Evaluation of the accuracy of a computeraided diagnosis (CAD) system in breast ultrasound according to the radiologist’s experience. Acad Radiol. 2012;19:311–319.
  • Horsch K, Giger ML, Vyborny CJ, Venta LA. Performance of computer-aided diagnosis in the interpretation of lesions on breast sonography. Acad Radiol. 2004;11:272–280.
  • Heywang SH, Wolf A, Pruss E, Hilbertz T, Eiermann W, Permanetter W. MR imaging of the breast with GdDTPA: use and limitations. Radiology. 1989;171:95– 103.
  • Kuhl CK. Current status of breast MR imaging, Pt. 2: Clinical applications. Radiology. 2007; 244:672–691.
  • Meeuwis C, van de Ven SM, Stapper G, Fernandez Gallardo AM, van den Bosch MAAJ, Mali WPTM, et al. Computer-aided detection (CAD) for breast MRI: evaluation of efficacy at 3.0 T. Eur Radiol. 2010;20:522–528.
  • Wang LC, DeMartini WB, Partridge SC, Peacock S, Lehman CD. MRI-detected suspicious breast lesions: predictive values of kinetic features measured by computer-aided evaluation. Am J Roentgenol. 2009;193:826–831. [PubMed]
  • Williams TC, DeMartini WB, Partridge SC, Peacock S, Lehman CD. Breast MR imaging: computer-aided evaluation program for discriminating benign from malignant lesions. Radiology. 2007;244:94–103.[PubMed]
  • Filipczuk P, Fevens T, Krzyżak A, Obuchowicz A. GLCM and GLRLM based texture features for computer-aided breast cancer diagnosis. J Med Inform Technol. 2012;19:109–115.
  • Issac Niwas S, Palanisamy P, Chibbar R, Zhang WJ. An expert support system for breast cancer diagnosis using color wavelet features. J Med Syst. 2012;36:3091–3102.
  • Bhardwaj A, Tiwari A. Breast cancer diagnosis using genetically optimized neural network model. Exp Syst Appl. 2015;42:4611–4620.
  • Nie K. Development of breast MRI computer-aided diagnosis system. Irvine, CA: University of California; 2009. (Thesis).
  • Ribli D, Horváth A, Unger Z, Pollner P, Csabai I. Detecting and classifying lesions in mammograms with deep learning. Sci Rep. 2018;8(1):4165.
  • Lee RS, Gimenez F, Hoogi A,Miyake KK, Gorovoy M, Rubin DL. Data descriptor: a curated mammography data set for use in computer-aided detection and diagnosis research. Sci Data. 2017;4:170177.
  • Xi P, Shu C, Goubran R. Abnormality detection in mammography using deep convolutional neural networks; 2018. arxiv:1803.01906.
  • Sahiner, B., Chan, H.-P., Petrick, N., Wei, D., Helvie, M.A., Adler, D.D., Goodsitt, M.M., 1996. Classification of mass and normal breast tissue: a convolution neural net- work classifier with spatial domain and texture images. IEEE Trans. Med. Imag- ing 15, 598–610. doi: 10.1109/42.538937 .
  • Kooi, T., Litjens, G., van Ginneken, B., Gubern-Mérida, A., Sánchez, C.I., Mann, R., den Heeten, A., Karssemeijer, N., 2016. Large scale deep learning for computer aided detection of mammographic lesions. Med. Image Anal. 35, 303–312. doi: 10.1016/ j.media.2016.07.007
  • Sun, W., Tseng, T.-L. B., Zhang, J., Qian, W., 2016a. Enhancing deep convolutional neural network scheme for breast cancer diagnosis with unlabeled data.. Comput. Med. Imaging Graph doi: 10.1016/j.compmedimag.2016.07.004 .
  • Hwang, S., Kim, H.-E., Jeong, J., Kim, H.-J., 2016. A novel approach for tuberculosis screening based on deep convolutional neural networks. In: Proceedings of the SPIE on Medical Imaging, 9785, pp. 97852W–1. doi: 10.1117/12.2216198 .
  • Kooi, T. , van Ginneken, B. , Karssemeijer, N. , den Heeten, A. , 2017. Discriminating soli- tary cysts from soft tissue lesions in mammography using a pretrained deep convolutional neural network. Med. Phys 44 (3), 1017–1027 .
  • Samala, R.K. , Chan, H.-P. , Hadjiiski, L. , Helvie, M.A. , Wei, J. , Cha, K. , 2016b. Mass de- tection in digital breast tomosynthesis: deep convolutional neural network with transfer learning from mammography. Med. Phys. 43 (12), 6654–6666 .
  • Dhungel, N., Carneiro, G., Bradley, A.P., 2016. The automated learning of deep features for breast mass classification from mammograms. In: Proceedings of the Medical Image Computing and Computer-Assisted Intervention. In: Lec- ture Notes in Computer Science, 9901. Springer, pp. 106–114. doi: 10.1007/ 978- 3- 31946723- 8 _ 13 .
  • Fotin, S.V. , Yin, Y. , Haldankar, H. , Hoffmeister, J.W. , Periaswamy, S. , 2016. Detection of soft tissue densities from digital breast tomosynthesis: comparison of con- ventional and deep learning approaches. In: Proceedings of the SPIE on Medical Imaging, 9785, p.97850X .
  • Akselrod-Ballin, A., Karlinsky, L., Alpert, S., Hasoul, S., Ben-Ari, R., Barkan, E., 2016. A region based convolutional network for tumor detection and classification in breast mammography. In: Proceedings of the Deep Learning in Medical Image Analysis (DLMIA). In: Lecture Notes in Computer Science, 10 0 08, pp. 197–205. doi: 10.1007/978- 3- 319- 46976- 8 _ 21
  • G. Carneiro, J. Nascimento, and A. P. Bradley, “Unregistered multiview mammogram analysis with pre-trained deep learning models,” in International Conference on Medical Image Computing and ComputerAssisted Intervention. Springer, 2015, pp.652–660.
  • M. G. Ertosun and D. L. Rubin, “Probabilistic visual search for masses within mammography images using deep learning,” in IEEE International Conference on Bioinformatics and Biomedicine. IEEE, 2015, pp.1310–1315.
  • [M. Heath, K. Bowyer, D. Kopans, R. Moore, W.P. Kegelmeyer, The digital database for screening mammography, Proceedings of the 5th international workshop on digital mammography, Medical Physics Publishing2000, pp. 212-218.
  • W. Zhu, Q. Lou, Y. S. Vang, and X. Xie, “Deep multiinstance networks with sparse label assignment for whole mammogram classification,” arXiv:1612.05968, 2016.
  • J. Suckling , et al., “The mammographic image analysis society digital mammogram database,” Exerpta Medica. International Congress Series, vol. 1069, pp. 375–378, 1994.
  • I. Domingues and J. S. Cardoso, “Mass detection on mammogram images: a first assessment of deep learning techniques,” 2013.
  • N. Dhungel, G. Carneiro, and A. P. Bradley, “Automated mass detection in mammograms using cascaded deep learning and random forests,” in International Conference on Digital Image Computing: Techniques and Applications. IEEE, 2015, pp. 1–8.
  • B. Q. Huynh, H. Li, and M. L. Giger, “Digital mammographic tumor classification using transfer learning from deep convolutional neural networks,” Journal of Medical Imaging, vol. 3, no. 3, pp. 034501– 034501, 2016.
  • I.C. Moreira, I. Amaral, I. Domingues, A. Cardoso, M.J. Cardoso, J.S. Cardoso, Inbreast: toward a full-field digital mammographic database, Academic radiology, 19 (2012) 236-248.
  • D. L´evy and A. Jain, “Breast mass classification from mammograms using deep convolutional neural networks,” arXiv:1612.00542, 2016.
  • B.R.N. Matheus , H. Schiabel , Online mammographic images database for development and comparison of CAD schemes, J. Digital Imaging 24 (3) (2011) 500– 506 .
  • J.Arevalo,F.A.Gonz´alez,R.RamosPoll´an,J.L.Oliveira,andM.A.G. Lopez, “Representation learning for mammography mass lesion classification with convolutional neural networks,” Computer methods and programs in biomedicine, vol. 127, pp. 248–257, 2016.
  • J.-J. Mordang, T. Janssen, A. Bria, T. Kooi, A. GubernM´erida, and N. Karssemeijer, “Automatic microcalcification detection in multivendor mammography using convolutional neural networks,” in International Workshop on Digital Mammography. Springer, 2016, pp. 35–42.
  • J. Wang, X. Yang, H. Cai, W. Tan, C. Jin, and L. Li, “Discrimination of breast cancer with microcalcifications on mammography by deep learning,” Scientific reports, vol. 6, p. 27327, 2016.
  • A. J. Bekker, H. Greenspan, and J. Goldberger, “A multi-view deep learning architecture for classification of breast microcalcifications,” in IEEE International Symposium on Biomedical Imaging, 2016, pp. 726– 730.
  • Arevalo J, González FA, Ramos-Pollán R, Oliveira JL, Guevara Lopez MA (2015) Convolutional neural networks for mammography mass lesion classification. In: 37th annual international conference of the IEEE engineering in medicine and biology society (EMBC). IEEE Press, Milan, pp 797–800
  • F. Han, H. Wang, G. Zhang, H. Han, B. Song, L. Li, W. Moore, H. Lu, H. Zhao, Z. Liang, Texture feature analysis for computer-aided diagnosis on pulmonary nodules, Journal of digital imaging, 28 (2015) 99-115.
  • Sharma K., and Preet B., (2016) Classification of mammogram images by using CNN classifier. In: International conference on advances in computing, communications and informatics (ICACCI). IEEE Press, Jaipur, pp 2743–2749
  • A. Dubrovina, P. Kisilev, B. Ginsburg, S. Hashoul & R. Kimmel (2016): Computational mammography using deep neural networks, Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization, DOI: 10.1080/21681163.2015.1131197. To link to this article: http://dx.doi.org/10.1080/21681163.2015.1131197
  • Pengcheng Xi, Chang Shu, Rafik Goubran (2018), “Abnormality Detection in Mammography using Deep Convolutional Neural Networks”
  • S. Karthik, R. Srinivasa Perumal and P. V. S. S. R. Chandra Mouli (2018), “Breast Cancer Classification Using Deep Neural Networks,” Springer Nature Singapore Pte Ltd. 2018, Knowledge Computing and Its Applications, https://doi.org/10.1007/978-981-106680-1_12 p.p: 227-241
  • Alexander Rakhlin, Alexey Shvets, Vladimir Iglovikov, and Alexandr A. Kalinin,( 2018) “Deep Convolutional Neural Networks for Breast Cancer Histology Image Analysis” Springer International Publishing AG, part of Springer Nature 2018 A. Campilho et al. (Eds.): ICIAR 2018, LNCS 10882, pp. 737–744, 2018.https://doi.org/10.1007/978-3-319-93000-8_83
  • M. Veta, P.J. Van Diest, S.M. Willems, H. Wang, A. Madabhushi, A. Cruz-Roa, F. Gonzalez, A.B. Larsen, J.S. Vestergaard, A.B. Dahl, Assessment of algorithms for mitosis detection in breast cancer histopathology images, Medical image analysis, 20 (2015) 237-248.
  • Jamieson, A.R., Drukker, K., Giger, M.L., 2012. Breast image feature learning with adaptive deconvolutional networks. In: Proceedings of the SPIE on Medical Imaging, 8315, p. 831506. doi: 10.1117/12.910710 .
  • A. Albayrak, G. Bilgin, Mitosis detection using convolutional neural network based features,Computational Intelligence and Informatics (CINTI), 2016 IEEE 17th International Symposium on,IEEE2016, pp. 000335- 000340.
  • F.A. Spanhol, L.S. Oliveira, C. Petitjean, L. Heutte, Breast cancer histopathological image classification using convolutional neural networks, Neural Networks (IJCNN), 2016 International Joint Conference on,IEEE2016, pp. 2560-2567.
  • F.A. Spanhol, L.S. Oliveira, C. Petitjean, L. Heutte, A dataset for breast cancer histopathological image classification, IEEE Transactions on Biomedical Engineering, 63 (2016) 1455-1462.
  • H. Chen, Q. Dou, X. Wang, J. Qin, P.-A. Heng, Mitosis Detection in Breast Cancer Histology Images via Deep Cascaded Networks, AAAI2016, pp. 1160-1166.
  • S. Albarqouni, C. Baur, F. Achilles, V. Belagiannis, S.Demirci, N. Navab, Aggnet: deep learning from crowds for mitosis detection in breast cancer histology images, IEEE transactions on medical imaging, 35 (2016) 1313-1321.
  • J. Xu, L. Xiang, R. Hang, J. Wu, Stacked Sparse Autoencoder (SSAE) based framework for nuclei patch classification on breast cancer histopathology, Biomedical Imaging (ISBI), 2014 IEEE 11th International Symposium on, IEEE2014, pp. 999-1002.
  • I. Wichakam, P. Vateekul, Combining deep convolutional networks and SVMs for mass detection on digital mammograms, Knowledge and Smart Technology (KST), 2016 8th International Conference on, IEEE2016, pp. 239-244.
  • S. Suzuki, X. Zhang, N. Homma, K. Ichiji, N. Sugita, Y. Kawasumi, T. Ishibashi, M. Yoshizawa, Mass detection using deep convolutional neural network for mammographic computer-aided diagnosis, Society of Instrument and Control Engineers of Japan (SICE), 2016 55th Annual Conference of the, IEEE2016, pp.
  • - 1386.
  • B. Swiderski, J. Kurek, S. Osowski, M. Kruk, W. Barhoumi, Deep learning and non-negative matrix factorization in recognition of mammograms, Eighth International Conference on Graphic and Image Processing, International Society for Optics and Photonics2017, pp. 102250B-102250B-102257.
  • M.G. Ertosun, D.L. Rubin, Probabilistic visual search for masses within mammography images using deep learning, Bioinformatics and Biomedicine (BIBM), 2015 IEEE International Conference on, IEEE2015, pp. 1310-1315.
  • M. Kallenberg, K. Petersen, M. Nielsen, A.Y. Ng, P. Diao, C. Igel, C.M. Vachon, K. Holland, R.R. Winkel, N. Karssemeijer, Unsupervised deep learning applied to breast density segmentation and mammographic risk scoring, IEEE transactions on medical imaging, 35 (2016) 1322-1331.
  • N. Dhungel, G. Carneiro, A.P. Bradley, Deep structured learning for mass segmentation from mammograms, Image Processing (ICIP), 2015 IEEE International Conference on, IEEE2015, pp. 2950-2954.
  • N. Dhungel, G. Carneiro, A.P. Bradley, Automated mass detection in mammograms using cascaded deep learning and random forests, Digital Image Computing: Techniques and Applications (DICTA), 2015 International Conference on, IEEE2015, pp. 1-8.
  • D.H. Kim, S.T. Kim, Y.M. Ro, Latent feature representation with 3-D multi-view deep convolutional neural network for bilateral analysis in digital breast tomosynthesis, Acoustics, Speech and Signal Processing (ICASSP), 2016 IEEE International Conference on, IEEE2016, pp. 927-931.
  • Hiba Chougrad , Hamid Zouaki , Omar Alheyane , (2018) “Deep Convolutional Neural Networks for Breast Cancer Screening,” Computer Methods and Programs in Biomedicine (2018), doi:
  • 1016/j.cmpb.2018.01.011
  • Sun Wenqing, Tseng Tzu-Liang (Bill), Zhang Jianying, Qian Wei.( 2016) “Enhancing deep onvolutional neural network scheme for breast cancer diagnosis with unlabeled data,” Computerized medical Imaging and Graphics http://dx.doi.org/10.1016/j.compmedimag.2016.07.004
  • D. Selvathi and A. Aarthy Poornila (2018 ) “Deep Learning Techniques for Breast Cancer Detection Using Medical Image Analysis” Springer International Publishing AG, Biologically Rationalized Computing
  • Techniques For Image Processing Applications, Lecture Notes in Computational Vision and Biomechanics 25, DOI 10.1007/978-3-319-61316-1_8
  • Pablo Guill´en-Rondon, Melvin Robinson, and Jerry Ebalunode (2019 ) “Breast Cancer Classification: A Deep Learning Approach for Digital Pathology” Springer Nature Switzerland AG 2019 , CARLA, CCIS
  • , pp. 33–40,. https://doi.org/10.1007/978-3-030-16205-4_3
  • Dan C. Cires¸an, Alessandro Giusti, Luca M. Gambardella, and J¨urgen Schmidhuber (2013) “Mitosis
  • Detection in Breast Cancer Histology Images with Deep Neural Networks”, Springer-Verlag Berlin
  • Heidelberg MICCAI 2013, Part II, LNCS 8150, pp. 411–418, 2013.
  • M. Fan, Y. Li, S. Zheng, W. Peng, W. Tang, L. Li, (2019) Computer-aided detection of mass in digital breast tomosynthesis using a faster region-based convolutional neural network, Methods (2019), doi: https://doi.org/10.1016/j.ymeth.2019.02.010
  • Dongdong Sun, Minghui Wang and Ao Li (2018) “A multimodal deep neural network for human breast
  • cancer prognosis prediction by integrating multidimensional data”, IEEE/ACM Transactions on Computational Biology and Bioinformatics, DOI 10.1109/TCBB.2018.2806438
  • METABRIC dataset available at http://www.cbioportal.org/study?id=brca_metabric#sum mary
  • Krzysztof J. Geras, Stacey Wolfson, Yiqiu Shen1, Nan Wu, S. Gene Kim, Eric Kim, Laura Heacock, Ujas Parikh, Linda Moy, Kyunghyun Cho (2018), “High-Resolution Breast Cancer Screening with Multi-View
  • Deep Convolutional Neural Networks” IEEE
  • T. Kooi, G. Litjens, B. van Ginneken, A. Gubern-M´erida, C. I. S´anchez, R. Mann, A. den Heeten, and N.Karssemeijer, “Large scale deep learning for computer aided detection of mammographic lesions,” Medical image analysis, vol. 35, pp. 303–312, 2017.
  • A. S. Becker, M. Marcon, S. Ghafoor, M. C. Wurnig, T. Frauenfelder, and A. Boss, “Deep learning in
  • mammography: Diagnostic accuracy of a multipurpose image analysis software in the detection of breast cancer.” Investigative Radiology, 2017.

Abstract Views: 161

PDF Views: 1




  • Deep Learning Techniques for Improving Breast Cancer Detection and Diagnosis

Abstract Views: 161  |  PDF Views: 1

Authors

Amira Hassan Abed
Department of Information Systems center Egyptian Organization for Standardization & Quality, Egypt

Abstract


In this paper, we aim to introduce a survey on the applications of deep learning for breast cancer detection and diagnosis to provide an overview of the progress in this field. In the survey, we firstly provide an overview on deep learning and the popular architectures used for breast cancer detection and diagnosis. Especially we present four popular deep learning architectures, including convolutional neural networks, fully convolutional networks, auto encoders, and deep belief networks in the survey. Secondly, we provide a survey on the studies exploiting deep learning for breast cancer detection and diagnosis.



Keywords


Deep Learning (DL), Breast Cancer, Breast Cancer Detection.

References