Open Access
Subscription Access
A Compact SWB Monopole Antenna and FSS for Gain Enhancement
In this research, a compact super-wideband monopole antenna is introduced. The antenna's electrical dimensions are 0.228λ × 0.144λ × 0.009λ, the λ represents the wavelength of the lowest operating frequency. The suggested antenna achieves a single operating band 10 dB between 2.8 and 40 GHz, a percentage bandwidth of 173.83%, and a BW ratio greater than 10:1. The suggested super wideband antenna has a large BDR of 5432.18 and a maximum gain of 6.6 dB. The antenna features a U-shaped radiating element and a rectangular, chamfered-cornered partial ground plane to attain super wideband characteristics. The antenna has been designed to be compact and flat in structure while still providing adequate gain and a broad range of frequencies, which makes it suitable for a variety of uses in contemporary wireless communication. To increase the antenna, gain for ultra-wideband applications, an FSS is developed. The FSS has a compact unit cell with physical dimensions of 18 x 18 mm2. When the FSS is used as a substrate, the antenna reaches a maximum realized gain of 10 dB. Additionally, at UWB frequencies, a gain amendment of up to 4.61 dB is observed.
Keywords
FSS, Enhanced Gain, Compact Monopole Antenna, SWB.
User
Font Size
Information
- Federal Communications Commission, Washington, D.C. 20554. First Report and Order. Availableat:https://transition.fcc.gov/Bureaus/EngineeringTechnology/Orders/2002/fcc02048pdf.
- Barbarino S, Consoli F. Study on super-wideband planar asymmetrical dipole antennas of circular shape. IEEE Trans Antennas Propag 2010;58(12):4074–8.
- Liu J, Esselle KP, Hay SG, Sun Z, Zhong S. A compact super-wideband antenna pair with polarization diversity. IEEE Antennas Wirel Propag Lett 2013;12:1472–5.
- Khan, I., Qiu, H., Rahman, S. U., & Ahmad, T. Compact design of monopole antenna for SWB application with high BDR. Microwave and Optical Technology Letters.
- Karimyian-Mohammadabadi M, Dorostkar MA, Shokuohi F, Shanbeh M, Torkan A. Super-wideband textile fractal antenna for wireless body area networks. Journal of Electromagnetic Waves and Applications 2015;29(13):1728–40.
- Rahman, Saeed Ur, et al. "Compact design of trapezoid shape monopole antenna for SWB application." Microwave and Optical Technology Letters 61.8 (2019): 1931-1937.
- Kundu S. Experimental study of a printed ultra-wideband modified circular monopole antenna. Microwave Opt Technol Lett 2019;61(5):1388–93.
- I. Khan, B. Qiu, S. U. Rahman and H. Ullah, “Compact Single Band Suppression Monopole Antenna for SWB Application”. Int. J. Advanced Networking and Applications, pp. 5645 - 5650. doi.org/10.35444/IJANA.2023.14509
- Al Amro WHA, Abdelazeez MK. Analysis and optimisation of super-wideband monopole antenna with tri-band notch using a transmission line model. IET Microwaves Antennas Propag 2019;13(9):1373–81.
- Yang L, Zhang D, Zhu X, Li Y. Design of a super wide band antenna and measure of ambient RF density in urban area. IEEE Access 2019;8:767–74.
- Singhal S, Singh AK. Elliptical monopole based super wideband fractal antenna. Microwave Opt Technol Lett 2020;62(3):1324–8.
- Gotra S, Varshney G, Pandey VS, Yaduvanshi RS. Super-wideband multi,input–multi-output dielectric resonator antenna. IET Microwaves Antennas Propag 2020;14(1):21–7.
- Alluri S, Rangaswamy N. Compact high bandwidth dimension ratio steering shaped super wideband antenna for future wireless communication applications. Microwave Opt Technol Lett 2020;62(12):3985–91.
- Azim R, Islam MT, Arshad H, Alam MM, Sobahi N, Khan AI. CPW-Fed Super Wideband Antenna With Modified Vertical Bow-Tie-Shaped Patch for Wireless Sensor Networks. IEEE Access 2020;9:5343–53.
- Ramanujam, P., Venkatesan, P. R., Arumugam, C., & Ponnusamy, M. (2020). Design of miniaturized super wideband printed monopole antenna operating from 0.7 to 18.5 GHz. AEU-Int J Electron Commun 123, 153273.
- Kundu S. A compact printed ultra-wideband filtenna with low dispersion for WiMAX and WLAN interference cancellation. S¯ adhan¯ a 2020;45(1):1–7.
- A. Ghosh, “Gain enhancement of triple-band patch antenna by using triple-band artificial magnetic conductor,” IET Microwaves, Antennas Propag., vol. 12, no. 8, Art. no. 1400, 2018.
- B. Zhang, P. Yao, and J. Duan. “Gain-enhanced antenna backed with the fractal artificial magnetic conductor,” IET Microw. Antennas Propag., vol. 12, no. 9, Art. no. 1457, 2018.
- K. N. Paracha, “A dual band stub-loaded AMC design for the gain enhancement of a planar monopole antenna,” Microw. Opt. Technol. Lett., vol. 60, no. 9, 2018.
- Dwivedi RP, Khan MZ, Kommuri UK. UWB circular cross slot AMC design for radiation improvement of UWB antenna. AEU-Int J Electron Commun 2020;117: 153092
- S. Roy and U. Chakraborty, “Gain enhancement of a dual-band WLAN microstrip antenna loaded with diagonal pattern metamaterials,” IET Commun., vol. 12, no. 12, Art. no. 1448, 2018.
- N. Rajak, N. Chattoraj, and R. Mark, “Metamaterial cell inspired high gain multiband antenna for wireless applications,” AEU-Int. J. Electron. Commun., vol. 109, pp. 23, 2019.
- A. Kumar, A. De, and R. K. Jain, “Gain enhancement using modified circular loop FSS loaded with slot antenna for sub-6 GHz 5G application,” Progress Electromagn. Res. Lett., vol. 98, pp. 41- 48, 2021.
- P. Das and K. Mandal, “Modelling of ultra-wide stop-band frequency-selective surface to enhance the gain of a UWB antenna,” IET Microw. Antennas Propag., vol. 13, no. 3, pp. 269-277, 2019.
- M. A. Belen, “Performance enhancement of a microstrip patch antenna using dual-layer frequency-selective surface for ISM band applications,” Microw. Opt. Technol. Lett., vol. 60, no. 11, pp. 2730-2734, 2018.
- S. Kundu, A. Chatterjee, S. K. Jana, and S. K. Parui, “A compact umbrella-shaped UWB antenna with gain augmentation using frequency selective surface,” Radio Eng., vol. 27, no. 2, pp. 448-454, 2018.
- A. Bhattacharya, B. Dasgupta, and R. Jyoti, “Design and analysis of ultrathin X-band frequency selective surface structure for gain enhancement of hybrid antenna,” Int. J. RF Microw. Comput.-Aided Eng., 2020.
- Swetha A, Naidu KR. Gain enhancement of an UWB antenna based on a FSS reflector for broadband applications. Prog Electromagn Res C 2020;99:193– 208.
- Al-Gburi AJA, Ibrahim IBM, Zeain MY, Zakaria Z. Compact size and high gain of CPW-fed UWB strawberry artistic shaped printed monopole antennas using FSS single layer reflector. IEEE Access 2020;8:92697.
- G. S. Paul, K. Mandal, and A. Lalbakhsh, “Single layer ultra-wide stop-band frequency selective surface using interconnected square rings,” AEU-Int. J. Electron. Commun., vol. 132, 2021.
- J. H. Kim, C.-H. Ahn, and J.-K. Bang, “Antenna gain enhancement using a holey superstrate,” IEEE Trans. Antennas Propag., vol. 64, no. 3, Art. no. 1164, 2016.
- Rahman, Saeed Ur, et al. "Design of tri‐notched UWB antenna based on elliptical and circular ring resonators." International Journal of RF and Microwave Computer‐Aided Engineering 29.3 (2019): e21648.
- Ur Rahman, Saeed, et al. "Design of wideband antenna with band notch characteristics based on single notching element." International Journal of RF and Microwave Computer‐Aided Engineering 29.2 (2019): e21541.
- Ur Rahman, Saeed, et al. "Design of wideband antenna with band notch characteristics based on single notching element." International Journal of RF and Microwave Computer‐Aided Engineering 29.2 (2019): e21541.
- Khan, Muhammad Irshad, et al. "A dual notched band printed monopole antenna for ultra-wide band applications." 2016 Progress In Electromagnetic Research Symposium (PIERS). IEEE, 2016.
- Zhang, Xiaobo, et al. "A novel SWB antenna with triple band-notches based on elliptical slot and rectangular split ring resonators." Electronics 8.2 (2019): 202.
Abstract Views: 189
PDF Views: 0